Formulation and numerical computation of the low frequency mean flow of fluids
流体低频平均流量的公式和数值计算
基本信息
- 批准号:463179503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:WBP Fellowship
- 财政年份:2021
- 资助国家:德国
- 起止时间:2020-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Highly oscillatory systems of partial differential equations (PDEs) dominate many scientific applications. We are now on the doorstep of a computing revolution with new, heterogeneous computer architectures which could enable significantly higher spatial resolution. One of the main issues standing in the way of taking advantage of these new computers is that as the spatial resolution increases, the time step must decrease. As an example, for an atmosphere model with a grid resolution of 300 kilometers, a 20 minute time step is generally used. Increasing the spatial resolution to 1 kilometer requires a reduction of the time step to 4 seconds, making high resolution simulations impractical for scientific exploration. However, it is known in theoretical fluid dynamics that low frequencies are created through nonlinear coupling of resonant and “near-resonant” waves. These frequencies dominate the dynamics of weather and climate applications. New formulations of the oscillatory PDEs that expose the described resonance behaviour can be used to derive equations for the mean flow which describes the nonlinear resonant and “near-resonant” part of the problem, and this, in turn, leads to constructing numerical methods able to take larger time steps than previously possible. In this project, I propose building on results from theoretical fluid dynamics and numerical analysis to 1) develop new formulations of the mean flow which take both the resonant and the “near-resonant” frequencies into account and 2) develop and analyse new numerical schemes, that do not neglect the resonant and also the “near-resonant” frequencies, with the goal of taking large time steps beyond current limitations. These schemes will be investigated by means of numerical analysis and implemented in idealized domains, mainly within the application of weather and climate simulation. The numerical schemes that will be explored include parallel-in-time schemes, because such schemes can contribute to substantially speeding up computations on modern computer architectures. The developed fluid dynamics theory and numerical algorithms have the potential to significantly decrease the time-to-solution for weather and climate models on new computer architectures.
高振动的偏微分方程组(PDE)在许多科学应用中占据主导地位。我们现在正处在一场计算革命的门口,拥有新的、不同种类的计算机体系结构,可以实现显著更高的空间分辨率。阻碍利用这些新计算机的主要问题之一是,随着空间分辨率的提高,时间步长必须减小。例如,对于网格分辨率为300公里的大气模式,通常使用20分钟的时间步长。将空间分辨率提高到1公里需要将时间步长减少到4秒,这使得高分辨率模拟不适用于科学探索。然而,在理论流体动力学中,低频是通过共振波和近谐振波的非线性耦合而产生的。这些频率主导着天气和气候应用的动态。揭示所述共振行为的振荡偏微分方程组的新公式可用于推导描述问题的非线性共振和“近共振”部分的平均流的方程,这反过来又导致构造能够采用比以前可能的更大时间步长的数值方法。在这个项目中,我建议以理论流体力学和数值分析的结果为基础,1)发展考虑共振和“接近共振”频率的平均流的新公式,以及2)开发和分析新的数值格式,不忽略共振和“接近共振”频率,目的是超越目前的限制,采取大的时间步长。这些方案将通过数值分析的方式进行研究,并在理想化的领域中实施,主要是在天气和气候模拟方面的应用。将探索的数值方案包括时间并行方案,因为这种方案可以大大加快现代计算机体系结构上的计算速度。发展的流体力学理论和数值算法有可能显著缩短天气和气候模型在新的计算机体系结构上的求解时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juliane Rosemeier其他文献
Juliane Rosemeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Novel Numerical Methods for Nonlinear Stochastic PDEs and High Dimensional Computation
非线性随机偏微分方程和高维计算的新数值方法
- 批准号:
2309626 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
RUI: Commutativity in Numerical Computation
RUI:数值计算中的交换律
- 批准号:
2012216 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Development of efficient arbitrary precision numerical linear computation library optimized for multi-core CPUs
开发针对多核CPU优化的高效任意精度数值线性计算库
- 批准号:
20K11843 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sign-change structure analysis for reaction-diffusion models based on rigorous numerical computation
基于严格数值计算的反应扩散模型符号变化结构分析
- 批准号:
19K14601 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Spatial-Temporal Modeling and Computation for Physical Processes and Numerical Simulations
物理过程和数值模拟的时空建模和计算
- 批准号:
1916208 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Numerical computation of the human voice source
人声源的数值计算
- 批准号:
391215328 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Analysis of a global-in-time solution for reaction-diffusion system using verified numerical computation
使用经过验证的数值计算分析反应扩散系统的全局实时解
- 批准号:
18K13462 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical simulations of uncertainty quantification and multiscale computation
不确定性量化和多尺度计算的数值模拟
- 批准号:
RGPIN-2014-05664 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Painleve equations: analytical properties and numerical computation
Painleve 方程:分析特性和数值计算
- 批准号:
EP/P026532/1 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grant
Numerical simulations of uncertainty quantification and multiscale computation
不确定性量化和多尺度计算的数值模拟
- 批准号:
RGPIN-2014-05664 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual