SGER: Nanoparticle Shape Formation Mechanisms in Gas Phase Synthesis
SGER:气相合成中纳米颗粒形状形成机制
基本信息
- 批准号:0423621
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-10-01 至 2006-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractCTS-0423621Y. Xing, U of Missouri-RollaNanoparticles have become an important class of materials in nanotechnology research and development. The well-known, size-dependent properties of nanoparticles make it possible to control their electronic, optical, chemical, and mechanical properties. Indeed, over the past two decades there has been enormous research activity in the synthesis of size-controlled nanoparticles. While the size is an important factor in controlling nanoparticle properties, the recent success in the synthesis of shape-controlled nanoparticles has demonstrated yet another interesting aspect in nanoparticles, i.e., shape-controlled properties. The objective of this research is to explore the shape formation mechanisms of iron oxidenanoparticles synthesized in a gas-phase process. By conducting experiments using a specially designed counterflow diffusion flame reactor, together with theoretical approaches to nanoparticle deposition in thermal boundary layers, we aim to obtain a fundamental understanding of gas-phase nanoparticle shape formation and to learn if the shape formation is due to nanoparticle crystallization during the deposition process, and if so, how it is affected by the thermal boundary layers.Intellectual meritThe synthesis of shape-controlled nanoparticles had been achieved only in liquid phase before. Our recent results in the gas-phase synthesis of iron oxide nanoparticles demonstrated a more favorable way of producing shaped-controlled nanoparticles. This exploratory research will be the first attempt to gain a fundamental understanding of nanoparticle shape formation in gasphase processes. Such research is necessary to increase our ability to control and optimize the gas-phase synthesis technique for shape-controlled nanoparticles. Through the proposed study, new knowledge will be created in nanoparticle synthesis, as well as in nanoparticle dynamics and transport in thermal boundary layers. The proposed research, if successful, will establish the foundation for a future, multi-year project in the gas-phase synthesis of shape-controlled nanoparticles.Broader ImpactsNanotechnology is fast becoming one of the key enabling technologies for economic growth. A fundamental study as proposed in this project will enable the development of more efficient and less costly processes for nanomaterials production. Therefore, the proposed project would have significant societal and economic impacts. The project will involve integrated research and education for both graduate and undergraduate students. Undergraduate students will be actively involved in the project through their independent research class. Graduate students will obtain their training through thesis research in the proposed area. A high school student also will be involved through a summer program at the University of Missouri-Rolla. In order to broadly disseminate new knowledge and experience, results from this work will be presented at professional meetings, published in peer-examined journals, and made available on the World Wide Web.
摘要CTS-0423621 Y。纳米粒子已成为纳米技术研究和开发中的一类重要材料。众所周知,纳米颗粒的尺寸依赖性使得可以控制其电子,光学,化学和机械性能。事实上,在过去的二十年里,在合成尺寸可控的纳米颗粒方面进行了大量的研究活动。虽然尺寸是控制纳米颗粒性质的重要因素,但最近在合成形状控制的纳米颗粒方面的成功已经证明了纳米颗粒的另一个有趣的方面,即,形状可控的特性。本研究旨在探讨气相法合成氧化铁纳米粒子的形貌形成机制。通过使用专门设计的逆流扩散火焰反应器进行实验,以及热边界层中纳米颗粒沉积的理论方法,我们的目标是获得对气相纳米颗粒形状形成的基本理解,并了解形状形成是否是由于沉积过程中的纳米颗粒结晶,如果是,它是如何受到热边界层的影响。智能优点形状控制纳米粒子的合成以前只在液相中实现。我们最近在气相合成氧化铁纳米粒子方面的研究结果表明,一种更有利的方法可以生产形状可控的纳米粒子。这项探索性的研究将是第一次尝试,以获得一个基本的了解,在气相过程中的纳米粒子形状的形成。这样的研究是必要的,以提高我们的控制和优化的气相合成技术的形状控制的纳米粒子的能力。通过这项研究,将在纳米颗粒合成,以及纳米颗粒动力学和热边界层中的传输方面创造新的知识。这项研究如果成功,将为未来的气相合成形状可控纳米粒子的多年项目奠定基础。更广泛的影响纳米技术正在迅速成为经济增长的关键技术之一。该项目中提出的基础研究将有助于开发更有效、成本更低的纳米材料生产工艺。因此,拟议项目将产生重大的社会和经济影响。该项目将涉及研究生和本科生的综合研究和教育。本科生将通过他们的独立研究班积极参与该项目。研究生将通过在拟议领域的论文研究获得他们的培训。一名高中生也将参与密苏里大学罗拉分校的暑期项目。为了广泛传播新的知识和经验,将在专业会议上介绍这项工作的成果,在同行审查的期刊上发表,并在万维网上提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yangchuan Xing其他文献
Magnetophoretic deposition of nanocomposites
- DOI:
10.1557/jmr.1999.0602 - 发表时间:
2011-01-31 - 期刊:
- 影响因子:2.900
- 作者:
Joseph L. Katz;Yangchuan Xing;R. C. Cammarata - 通讯作者:
R. C. Cammarata
Yangchuan Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yangchuan Xing', 18)}}的其他基金
GOALI: Nanostructured Electrodes for Micro PEM Fuel Cells
GOALI:用于微型 PEM 燃料电池的纳米结构电极
- 批准号:
0522931 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Lipid nanoparticle-mediated Inhalation delivery of anti-viral nucleic acids
脂质纳米颗粒介导的抗病毒核酸的吸入递送
- 批准号:
502577 - 财政年份:2024
- 资助金额:
-- - 项目类别:
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
- 批准号:
2338117 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Protein engineering and processing of plant viral templates for controlled nanoparticle synthesis
合作研究:用于受控纳米颗粒合成的植物病毒模板的蛋白质工程和加工
- 批准号:
2426065 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Precision Guided Nanoparticle-Based Gene Editing of High-Grade Glioblastoma using CRISPR Technology
使用 CRISPR 技术对高级别胶质母细胞瘤进行精确引导的基于纳米颗粒的基因编辑
- 批准号:
24K10440 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke
基于上转换纳米粒子的光学生物传感器用于中风的早期诊断
- 批准号:
MR/Y503460/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant