SGER: Exploration of the Mechanism of ATP-dependent Proteases by Force Measurements Using Single Molecule Techniques

SGER:使用单分子技术通过力测量探索 ATP 依赖性蛋白酶的机制

基本信息

  • 批准号:
    0426913
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-01 至 2006-03-31
  • 项目状态:
    已结题

项目摘要

Protein unfolding in the cell is an important step in several processes, most clearly protein translocation across some membranes and protein degradation by ATP-dependent proteases. The mitochondrial protein translocase and ATP-dependent proteases catalyze unfolding by sequentially unraveling their substrates. Differences in the susceptibility of substrate proteins to unfolding appear to contribute significantly to the specificity of translocation and degradation. The novel hypothesis to be tested here is that mitochondria and ATP-dependent proteases catalyze protein unfolding by physically pulling at the polypeptide chain. Unfolding by pulling would be a new mechanism of action for a cellular process and would have important consequences for understanding of many molecular machines. A pulling mechanism would be consistent with the experimental observations but the image is based on analogies to the experiences in the macroscopic world and it is not immediately clear whether this image can be transferred to the molecular events under discussion. It is now possible, at least in principle, to address these questions experimentally. The last five years have produced the methodology to measure small physical forces produced by biological machines using atomic force microscopy and optical traps. The long term goals of this project are to address the following three broad objectives:1) To establish for one ATP-dependent protease, ClpAP, whether it produces a physical pulling force. The pulling force and its effect on the substrate will be characterized by measuring the maximum amount of force that the protease can generate, the translocation rates, and the step size of the motor that generates the force. 2) To determine whether and how the pulling forces depend on the sequence of the substrate. Preliminary evidence suggests that low complexity regions, such as glutamine repeat regions and glycine repeat regions in substrates attenuate the unfolding activity of the proteasome. The hypothesis here is that the repeat sequences affect the manner in which the translocation motor in the protease interacts with the substrate.3) To compare the forces produced by the different proteases and to determine what properties are intrinsic to all proteases and what properties vary. The immediate goal of this SGER project is to setup the biochemical groundwork for the experiments described above. The protease ClpAP will be cross-linked to polystyrene beads and activity of the protease will be ensured. A suitable protease substrate will be constructed. It should be long enough to allow monitoring of the forces and displacement of the substrate during degradation. The substrate will be cross-linked to the polystyrene beads and determine whether the substrate remains accessible to protease. Once completed, the system will be ready for use in determination of physical forces during protein unfolding using atomic force microscopy.Broader impacts: The concepts to be explored in this high-risk project are novel. If the concepts were proved correct by this work, an unprecedented mechanism for the action of a biological machine will be established. This will have consequences in the use of molecular machines in nanobiotechnology applications. The project will also involve student training activities.
蛋白质在细胞中展开是几个过程中的重要步骤,最明显的是蛋白质在一些膜上的易位和atp依赖性蛋白酶的蛋白质降解。线粒体蛋白转位酶和atp依赖蛋白酶通过顺序解开其底物来催化展开。底物蛋白对展开的敏感性差异似乎对易位和降解的特异性有重要影响。这里要测试的新假设是线粒体和atp依赖的蛋白酶通过物理拉动多肽链来催化蛋白质展开。通过拉扯展开将是细胞过程的一种新的作用机制,并将对理解许多分子机器产生重要影响。拉力机制将与实验观察一致,但图像是基于对宏观世界经验的类比,目前尚不清楚该图像是否可以转移到讨论中的分子事件。至少在原则上,现在有可能通过实验来解决这些问题。在过去的五年里,人们已经发明了一种方法来测量生物机器产生的微小物理力,这种方法使用原子力显微镜和光学陷阱。该项目的长期目标是解决以下三个主要目标:1)确定一种atp依赖性蛋白酶ClpAP是否产生物理拉力。拉力及其对底物的影响将通过测量蛋白酶可以产生的最大力、易位率和产生力的马达的步长来表征。2)确定拉力是否以及如何取决于基材的顺序。初步证据表明,低复杂性区域,如底物中的谷氨酰胺重复区域和甘氨酸重复区域,会减弱蛋白酶体的展开活性。这里的假设是重复序列影响蛋白酶中的易位马达与底物相互作用的方式。3)比较不同蛋白酶产生的力,确定所有蛋白酶的特性是什么,哪些特性是不同的。这个SGER项目的直接目标是为上述实验建立生化基础。将蛋白酶ClpAP交联到聚苯乙烯小珠上,保证蛋白酶的活性。构建合适的蛋白酶底物。它应该足够长,以便在降解过程中监测基材的力和位移。底物将与聚苯乙烯珠交联,并确定底物是否仍可被蛋白酶接触。一旦完成,该系统将准备用于原子力显微镜测定蛋白质展开过程中的物理力。更广泛的影响:在这个高风险项目中探索的概念是新颖的。如果这项工作证明这些概念是正确的,那么一个前所未有的生物机器的作用机制将被建立起来。这将对分子机器在纳米生物技术应用中的应用产生影响。该项目还将涉及学生培训活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Matouschek其他文献

Ramping up degradation for proliferation
加剧扩散性退化
  • DOI:
    10.1038/ncb3306
  • 发表时间:
    2016-01-28
  • 期刊:
  • 影响因子:
    19.100
  • 作者:
    Jon M. Huibregtse;Andreas Matouschek
  • 通讯作者:
    Andreas Matouschek
Simple sequence domain of Ci regulates proteolytic processing
  • DOI:
    10.1016/j.ydbio.2006.04.347
  • 发表时间:
    2006-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert A. Holmgren;Lin Tian;Andreas Matouschek
  • 通讯作者:
    Andreas Matouschek

Andreas Matouschek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Matouschek', 18)}}的其他基金

Protein Unfolding by Prokaryotic Energy Dependent Proteases
原核能量依赖性蛋白酶的蛋白质展开
  • 批准号:
    0344960
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Protein Unfolding by Energy Dependent Proteases
职业:通过能量依赖性蛋白酶展开蛋白质
  • 批准号:
    9875857
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Exploration of analgesic drug based on the underlying mechanism of circadian variation in the cancer breakthrough pain
基于昼夜节律变化的癌痛突破机制的镇痛药物探索
  • 批准号:
    22K18375
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Exploration of the regulatory mechanism of cell-cell fusion in osteoclastogenesis by CRISPR screening and proximity labeling
通过CRISPR筛选和邻近标记探索破骨细胞生成中细胞与细胞融合的调控机制
  • 批准号:
    22K06730
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploration of the formation mechanism of heterocyclic molecules relevant to the chemistry of Titan's atmosphere
探索与土卫六大气化学相关的杂环分子的形成机制
  • 批准号:
    568209-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Exploration of chloroplast DNA repair mechanism with the cancer therapy
叶绿体DNA修复机制与癌症治疗的探索
  • 批准号:
    22K19329
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of an intracellular delivery method of long mRNA with disulfide-modified oligonucleotides and exploration of its mechanism
二硫键修饰寡核苷酸长mRNA细胞内递送方法的开发及其机制探讨
  • 批准号:
    22K15247
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploration of a forward kinematic model for a parallel robot mechanism
并联机器人机构正向运动学模型探索
  • 批准号:
    574547-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Application of electromagnetic exploration by CSMT method to clarify the mechanism of huge landslides
应用CSMT法电磁勘探阐明特大滑坡机理
  • 批准号:
    22K18867
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Exploration of the physiological significance and mechanism of unknown apoptosis in early vertebrate embryos
早期脊椎动物胚胎未知细胞凋亡的生理意义和机制探讨
  • 批准号:
    21J14254
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploration of TLR3 ligands and the regulatory mechanism of response through nucleases in HSV infection.
探索 TLR3 配体以及 HSV 感染中核酸酶反应的调节机制。
  • 批准号:
    21K15464
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Control exploration and exploitation: The behaviour mechanism, neural basis, and computational model
控制探索和利用:行为机制、神经基础和计算模型
  • 批准号:
    21H03780
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了