ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts

ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具

基本信息

  • 批准号:
    0427206
  • 负责人:
  • 金额:
    $ 33.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

Sequential and graph-structured data arise naturally in a wide variety of scientific, engineering, and intelligence problems, such as handwriting and speech recognition, text mining, gene finding, and network analysis. While researchers have recently made significant progress on machine learning methods for processing structured data, these methods are much less accessible to scientists, engineers, and analysts than the better understood statistical learning techniques of classification and regression.This project is researching methods to advance the state of the art in machine learning for structured data, building on recent work in conditional random fields and weighted transducers. The project is also developing a software toolkit to make the results of these advances accessible to researchers working in a wide range of disciplines and application domains. The toolkit will enable users to define, train, and apply models for structured data without requiring advanced expertise in machine learning. The functionality of the toolkit will include methods for specifying features relevant to an application, automatically selecting the most relevant features, adjusting parameters to optimize suitable training objectives, and combining models that pertain to different facets of an application.The software, which will be freely distributed, will be tested with selected users in several application domains, and be carefully documented. The project will thus provide the scientific and engineering community with the first generally usable tool for learning from structured data, serving a role that is parallel to that of the more standard tools for classification and regression that are already widely used.
序列和图形结构的数据自然出现在各种科学、工程和智能问题中,如手写和语音识别、文本挖掘、基因发现和网络分析。虽然研究人员最近在处理结构化数据的机器学习方法方面取得了重大进展,但这些方法对科学家,工程师和分析师来说远不如更好理解的分类和回归统计学习技术。该项目正在研究方法,以推进结构化数据机器学习的最新技术,建立在条件随机场和加权换能器的最新工作基础上。 该项目还在开发一个软件工具包,使从事广泛学科和应用领域工作的研究人员能够利用这些进展的成果。 该工具包将使用户能够定义,训练和应用结构化数据模型,而无需机器学习方面的高级专业知识。 该工具包的功能将包括具体说明与某一应用有关的特征、自动选择最相关的特征、调整参数以优化适当的培训目标以及将与某一应用的不同方面有关的模型结合起来的方法,该软件将免费分发,将在若干应用领域中与选定的用户进行测试,并将仔细记录在案。 因此,该项目将为科学和工程界提供第一个普遍可用的工具,用于从结构化数据中学习,其作用与已经广泛使用的分类和回归的更标准工具的作用类似。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lafferty其他文献

Abstractors: Transformer Modules for Symbolic Message Passing and Relational Reasoning
摘要:用于符号消息传递和关系推理的转换器模块
  • DOI:
    10.48550/arxiv.2304.00195
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Awni Altabaa;Taylor Webb;Jonathan D. Cohen;John Lafferty
  • 通讯作者:
    John Lafferty

John Lafferty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lafferty', 18)}}的其他基金

Generative Models for Complex Data: Inference, Sensing, and Repair
复杂数据的生成模型:推理、感知和修复
  • 批准号:
    2015397
  • 财政年份:
    2020
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
  • 批准号:
    1748444
  • 财政年份:
    2017
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
  • 批准号:
    1513594
  • 财政年份:
    2015
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
MSPA-MCS: Nonparametric Learning in High Dimensions
MSPA-MCS:高维非参数学习
  • 批准号:
    0625879
  • 财政年份:
    2006
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
ITR: Machine Learning from Labeled and Unlabeled Data
ITR:从标记和未标记数据进行机器学习
  • 批准号:
    0312814
  • 财政年份:
    2003
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
Graphical Structures for Coding and Verification
用于编码和验证的图形结构
  • 批准号:
    9805366
  • 财政年份:
    1998
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    0833849
  • 财政年份:
    2008
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0808419
  • 财政年份:
    2007
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
  • 批准号:
    0711040
  • 财政年份:
    2007
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
  • 批准号:
    0749671
  • 财政年份:
    2006
  • 资助金额:
    $ 33.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了