Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
基本信息
- 批准号:1513594
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project lies at the boundary of statistics and machine learning. The underlying theme is to exploit constraints that are present in complex scientific data analysis problems, but that have not been thoroughly studied in traditional approaches. The project will explore theory, algorithms, and applications of statistical procedures, with constraints imposed on the storage, runtime, shape, energy or physics of the estimators and applications. The overall goal of the research is to develop theory and tools that can help scientists to conduct more effective data analysis.Many statistical methods are purely "data driven" and only place smoothness or regularity restrictions on the underlying model. In particular, classical statistical theory studies estimators without regard to their computational requirements. In modern data analysis settings, including astronomy, cloud computing, and embedded devices, computational demands are often central. The project will develop minimax theory and algorithms for nonparametric estimation and detection problems under constraints on storage, computation, and energy. Other constraints to be studied include shape restrictions such as convexity and monotonicity for high dimensional data. The project will also investigate the incorporation of physical constraints through the use of PDEs and models of physical dynamics and mechanics, focusing on both algorithms and theoretical bounds.
这个项目处于统计学和机器学习的边界。潜在的主题是利用在复杂的科学数据分析问题中存在的约束,但这些约束在传统方法中尚未得到彻底研究。该项目将探索统计程序的理论、算法和应用,并对估计器和应用程序的存储、运行时间、形状、能量或物理施加限制。这项研究的总体目标是发展理论和工具,帮助科学家进行更有效的数据分析。许多统计方法纯粹是“数据驱动”的,只对底层模型施加平滑性或规律性限制。特别是,经典统计理论研究估计量而不考虑它们的计算需求。在现代数据分析设置中,包括天文学、云计算和嵌入式设备,计算需求通常是中心。该项目将为存储、计算和能源限制下的非参数估计和检测问题开发极大极小理论和算法。其他需要研究的约束包括高维数据的凸性和单调性等形状限制。该项目还将通过使用偏微分方程和物理动力学和力学模型来研究物理约束的结合,重点关注算法和理论界限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lafferty其他文献
Abstractors: Transformer Modules for Symbolic Message Passing and Relational Reasoning
摘要:用于符号消息传递和关系推理的转换器模块
- DOI:
10.48550/arxiv.2304.00195 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Awni Altabaa;Taylor Webb;Jonathan D. Cohen;John Lafferty - 通讯作者:
John Lafferty
John Lafferty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lafferty', 18)}}的其他基金
Generative Models for Complex Data: Inference, Sensing, and Repair
复杂数据的生成模型:推理、感知和修复
- 批准号:
2015397 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
- 批准号:
1748444 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
MSPA-MCS: Nonparametric Learning in High Dimensions
MSPA-MCS:高维非参数学习
- 批准号:
0625879 - 财政年份:2006
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts
ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具
- 批准号:
0427206 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
ITR: Machine Learning from Labeled and Unlabeled Data
ITR:从标记和未标记数据进行机器学习
- 批准号:
0312814 - 财政年份:2003
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Graphical Structures for Coding and Verification
用于编码和验证的图形结构
- 批准号:
9805366 - 财政年份:1998
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似海外基金
Statistical Reconstruction of Highly Undersampled DCE MRI with Constrained Optimization for Parameter Estimation
具有参数估计约束优化的高度欠采样 DCE MRI 统计重建
- 批准号:
569544-2022 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Postgraduate Scholarships - Doctoral
Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
- 批准号:
1748444 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Statistical Estimation in Resource-Constrained Environments: Computation, Communication and Privacy
资源受限环境中的统计估计:计算、通信和隐私
- 批准号:
1612948 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2005
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2003
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2002
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-1997 - 财政年份:2000
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-1997 - 财政年份:1999
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual