Generative Models for Complex Data: Inference, Sensing, and Repair

复杂数据的生成模型:推理、感知和修复

基本信息

  • 批准号:
    2015397
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The research in this project lies at the boundary of statistics and machine learning, and is focused on studying new families of statistical models. A generative model is an algorithm that transforms random inputs into synthesized data to mimic data found in a naturally occurring dataset, such as a database of images. The research will explore theory, algorithms, and applications of generative models to gain insight into phenomena observed in practice but poorly understood in terms of mathematical principles. The work will also pursue new applications of generative models in computational neuroscience, at scales from the cellular level to the macro level of human cognition. Anticipated outcomes of the research include development of software that implements new methodology, training of graduate students across traditional disciplines, and the introduction of modern statistics and machine learning to undergraduates through research projects based on this work.The technical objectives of the project include four interrelated aims. First is to investigate the statistical properties of variational programs that are widely used in deep learning, and to develop new approaches to building generative models for novel data types. The second aim is to explore new algorithms to solve inverse problems based on generative models. Third, a new form of robust estimation will be studied where a model is corrupted after it has been constructed on data. Model repair is motivated from the fact that increasingly large statistical models, including neural networks, are being embedded in systems that may be subject to failure. Finally, the project will develop applications of generative modeling and inversion algorithms for modeling brain imaging data, including the use of simultaneous recordings in different modalities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究处于统计学和机器学习的边界,重点是研究新的统计模型家族。生成模型是一种算法,它将随机输入转换为合成数据,以模仿自然发生的数据集中的数据,例如图像数据库。该研究将探索生成模型的理论,算法和应用,以深入了解在实践中观察到的现象,但在数学原理方面知之甚少。这项工作还将追求生成模型在计算神经科学中的新应用,从细胞水平到人类认知的宏观水平。该研究的预期成果包括开发实现新方法的软件,培养跨传统学科的研究生,以及通过基于这项工作的研究项目向本科生介绍现代统计和机器学习。该项目的技术目标包括四个相互关联的目标。首先是研究在深度学习中广泛使用的变分程序的统计特性,并开发新的方法来为新的数据类型构建生成模型。第二个目标是探索基于生成模型的反问题求解新算法。第三,将研究一种新形式的鲁棒估计,其中模型在数据上构建后被破坏。模型修复的动机是越来越大的统计模型,包括神经网络,被嵌入到可能会失败的系统中。最后,该项目将开发生成建模和反演算法的应用程序,用于建模大脑成像数据,包括使用不同模式的同步记录。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lafferty其他文献

Abstractors: Transformer Modules for Symbolic Message Passing and Relational Reasoning
摘要:用于符号消息传递和关系推理的转换器模块
  • DOI:
    10.48550/arxiv.2304.00195
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Awni Altabaa;Taylor Webb;Jonathan D. Cohen;John Lafferty
  • 通讯作者:
    John Lafferty

John Lafferty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lafferty', 18)}}的其他基金

Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
  • 批准号:
    1748444
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Constrained Statistical Estimation and Inference: Theory, Algorithms and Applications
约束统计估计和推理:理论、算法和应用
  • 批准号:
    1513594
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MSPA-MCS: Nonparametric Learning in High Dimensions
MSPA-MCS:高维非参数学习
  • 批准号:
    0625879
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts
ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具
  • 批准号:
    0427206
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
ITR: Machine Learning from Labeled and Unlabeled Data
ITR:从标记和未标记数据进行机器学习
  • 批准号:
    0312814
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Graphical Structures for Coding and Verification
用于编码和验证的图形结构
  • 批准号:
    9805366
  • 财政年份:
    1998
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Automated Modelling Assistance for the Creation of Complex Planning Models
用于创建复杂规划模型的自动建模协助
  • 批准号:
    DE240101245
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Seismic Tomography Models for Alaska: Validation, Iteration, and Complex Anisotropy
阿拉斯加地震层析成像模型:验证、迭代和复杂各向异性
  • 批准号:
    2342129
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
eMB: Bridging the Gap Between Agent Based Models of Complex Biological Phenomena and Real-World Data Using Surrogate Models
eMB:使用代理模型弥合基于代理的复杂生物现象模型与真实世界数据之间的差距
  • 批准号:
    2324818
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
General applicability and quantitative predictability of complex population-based crystallization models
基于复杂群体的结晶模型的普遍适用性和定量可预测性
  • 批准号:
    2903595
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
LEAPS-MPS: Development of Models in Spatial Statistics for Complex Policing and Social Science Applications
LEAPS-MPS:复杂警务和社会科学应用的空间统计模型的开发
  • 批准号:
    2316857
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Integrated models of learning and decision making in complex tasks
复杂任务中学习和决策的集成模型
  • 批准号:
    DE230100171
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Early Career Researcher Award
Methods for Enhancing Polygenic Risk Prediction Models for Complex Disease
增强复杂疾病多基因风险预测模型的方法
  • 批准号:
    10717244
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了