ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts
ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具
基本信息
- 批准号:0427594
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sequential and graph-structured data arise naturally in a wide variety of scientific, engineering, and intelligence problems, such as handwriting and speech recognition, text mining, gene finding, and network analysis. While researchers have recently made significant progress on machine learning methods for processing structured data, these methods are much less accessible to scientists, engineers, and analysts than the better understood statistical learning techniques of classification and regression.This project is researching methods to advance the state of the art in machine learning for structured data, building on recent work in conditional random fields and weighted transducers. The project is also developing a software toolkit to make the results of these advances accessible to researchers working in a wide range of disciplines and application domains. The toolkit will enable users to define, train, and apply models for structured data without requiring advanced expertise in machine learning. The functionality of the toolkit will include methods for specifying features relevant to an application, automatically selecting the most relevant features, adjusting parameters to optimize suitable training objectives, and combining models that pertain to different facets of an application.The software, which will be freely distributed, will be tested with selected users in several application domains, and be carefully documented. The project will thus provide the scientific and engineering community with the first generally usable tool for learning from structured data, serving a role that is parallel to that of the more standard tools for classification and regression that are already widely used.
序列和图形结构的数据自然出现在各种科学、工程和智能问题中,如手写和语音识别、文本挖掘、基因发现和网络分析。虽然研究人员最近在处理结构化数据的机器学习方法方面取得了重大进展,但这些方法对科学家,工程师和分析师来说远不如更好理解的分类和回归统计学习技术。该项目正在研究方法,以推进结构化数据机器学习的最新技术,建立在条件随机场和加权换能器的最新工作基础上。 该项目还在开发一个软件工具包,使从事广泛学科和应用领域工作的研究人员能够利用这些进展的成果。 该工具包将使用户能够定义,训练和应用结构化数据模型,而无需机器学习方面的高级专业知识。 该工具包的功能将包括具体说明与某一应用有关的特征、自动选择最相关的特征、调整参数以优化适当的培训目标以及将与某一应用的不同方面有关的模型结合起来的方法,该软件将免费分发,将在若干应用领域中与选定的用户进行测试,并将仔细记录在案。 因此,该项目将为科学和工程界提供第一个普遍可用的工具,用于从结构化数据中学习,其作用与已经广泛使用的分类和回归的更标准工具的作用类似。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew McCallum其他文献
An Interoperable Multimedia Catalog System for Electronic Commerce.
用于电子商务的可互操作多媒体目录系统。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
William W. Cohen;Andrew McCallum;D. Quass - 通讯作者:
D. Quass
ezCoref : A Scalable Approach for Collecting Crowdsourced Annotations for Coreference Resolution
ezCoref:一种收集众包注释以进行共指解析的可扩展方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Crowdsourced;David Bamman;Olivia Lewke;Rachel Bawden;Rico Sennrich;Alexandra Birch;Ari Bornstein;Arie Cattan;Ido Dagan;Hong Chen;Zhenhua Fan;Hao Lu;Alan Yuille;Eduard Hovy;Mitch Marcus;M. Palmer;Lance;Rodney Huddleston. 2002;Frédéric Landragin;T. Poibeau;Bernard Vic;Belinda Z. Li;Gabriel Stanovsky;Robert L Logan;Andrew McCallum;Sameer Singh - 通讯作者:
Sameer Singh
Scaling Within Document Coreference to Long Texts
文档共指内的缩放到长文本
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Raghuveer Thirukovalluru;Nicholas Monath;K. Shridhar;M. Zaheer;Mrinmaya Sachan;Andrew McCallum - 通讯作者:
Andrew McCallum
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
PaRaDe:使用大型语言模型的演示进行段落排名
- DOI:
10.48550/arxiv.2310.14408 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Drozdov;Honglei Zhuang;Zhuyun Dai;Zhen Qin;Razieh Rahimi;Xuanhui Wang;Dana Alon;Mohit Iyyer;Andrew McCallum;Donald Metzler;Kai Hui - 通讯作者:
Kai Hui
Every Answer Matters: Evaluating Commonsense with Probabilistic Measures
每个答案都很重要:用概率度量评估常识
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Qi Cheng;Michael Boratko;Pranay Kumar Yelugam;T. O’Gorman;Nalini Singh;Andrew McCallum;X. Li - 通讯作者:
X. Li
Andrew McCallum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew McCallum', 18)}}的其他基金
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
- 批准号:
2244805 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
- 批准号:
1922090 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
- 批准号:
1534431 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
III: Medium: Constructing Knowledge Bases by Extracting Entity-Relations and Meanings from Natural Language via "Universal Schema"
III:媒介:通过“通用模式”从自然语言中提取实体关系和含义来构建知识库
- 批准号:
1514053 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
The Fourth Northeast Student Colloquium on Artificial Intelligence
第四届东北学生人工智能学术研讨会
- 批准号:
1036017 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CI-ADDO-EN: Flexible Machine Learning for Natural Language in the MALLET Toolkit
CI-ADDO-EN:MALLET 工具包中自然语言的灵活机器学习
- 批准号:
0958392 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
RI-Medium: Collaborative Research: Dynamically-Structured Conditional Random Fields for Complex, Natural Domains
RI-Medium:协作研究:复杂自然域的动态结构条件随机场
- 批准号:
0803847 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
CRI: Collaborative Research: Improving Experimental Computer Science with a Searchable Web Portal for Data Sets
CRI:协作研究:通过可搜索的数据集门户网站改进实验计算机科学
- 批准号:
0551597 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
- 批准号:
0749671 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant