RI: Medium: Probabilistic Box Embeddings
RI:中:概率框嵌入
基本信息
- 批准号:2106391
- 负责人:
- 金额:$ 84.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) and machine learning are revolutionizing the pace of progress in science, biomedicine, healthcare, business, economics, and the national defense. A foundational technical choice in AI and machine learning is that of representation. Before a machine can reason over data, that data must be represented in a way that enables parameters to be learned, and useful inferences to be made. The choice of representation has profound implications for the method’s capabilities and safety. This project explores an new alternative fundamental representation that is expected to provide better expressivity, interpretability, uncertainty characterization, and robustness, thereby laying groundwork which has the potential to provide in future representational foundations advantageous to AI safety and commonsense reasoning.The fundamental representation for data and concepts in nearly all machine learning, including neural networks, is the vector: a point in d-dimensional space. Vectors conveniently support symmetric distance calculation, semantic neighborhoods, and geometric reasoning. For example, learned vectors representing "eagle," "bird," and "fly" may designate points that are close to each other, indicating that they are semantically closely related. However, there are intriguing reasons to consider representations based not on points, but rather regions––regions of varying breadth and overlap, able to capture (like Venn diagrams) that "bird" is a broader concept than "eagle" and "all eagles are birds" and "some but not all birds fly." This project focuses on machine learning research in a new learnable representation called box embeddings, d-dimensional hyperrectangles, which are closed under intersection, can represent arbitrary directed acyclic graphs, define regions whose volume is easily calculated, and can precisely and compactly represent large joint probability distributions. The research will address foundational open research questions concerning (1) fundamentals such as expressivity, regularization, and alternative geometric spaces; (2) relation to graphical models, having already shown that boxes have interestingly different strengths; and (3) deep learning with boxes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和机器学习正在彻底改变科学、生物医学、医疗保健、商业、经济和国防的进步步伐。人工智能和机器学习的一个基本技术选择是表征。在机器能够对数据进行推理之前,数据必须以一种能够学习参数并做出有用推断的方式来表示。表示方式的选择对方法的性能和安全性有着深远的影响。该项目探索了一种新的替代基本表示,有望提供更好的表达性、可解释性、不确定性表征和鲁棒性,从而奠定基础,有可能在未来提供有利于人工智能安全和常识推理的表示基础。几乎所有机器学习(包括神经网络)中数据和概念的基本表示都是向量:d维空间中的一个点。向量方便地支持对称距离计算,语义邻域和几何推理。例如,代表“鹰”、“鸟”和“飞”的学习向量可以指定彼此接近的点,表明它们在语义上密切相关。然而,有一些有趣的理由让我们考虑基于区域而不是基于点的表示——不同宽度和重叠的区域,能够捕捉到(像维恩图一样)“鸟”是一个比“鹰”、“所有鹰都是鸟”和“一些但不是所有的鸟都会飞”更广泛的概念。该项目专注于机器学习研究一种新的可学习表示,称为盒嵌入,d维超矩形,它在相交下闭合,可以表示任意有向无环图,定义体积易于计算的区域,并且可以精确而紧凑地表示大联合概率分布。该研究将解决基础开放研究问题,涉及:(1)表达性、正则化和替代几何空间等基础问题;(2)与图形模型的关系,已经表明盒子具有有趣的不同强度;(3)用盒子进行深度学习。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling Transitivity and Cyclicity in Directed Graphs via Binary Code Box Embeddings
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dongxu Zhang;Michael Boratko;Cameron Musco;A. McCallum
- 通讯作者:Dongxu Zhang;Michael Boratko;Cameron Musco;A. McCallum
Modeling Label Space Interactions in Multi-label Classification using Box Embeddings
使用框嵌入对多标签分类中的标签空间交互进行建模
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Patel, Dhruvesh;Dangati, Pavitra;Lee, Jay-Yoon;Boratko, Michael;McCallum, Andrew
- 通讯作者:McCallum, Andrew
Capacity and Bias of Learned Geometric Embeddings for Directed Graphs
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Michael Boratko;Dongxu Zhang;Nicholas Monath;L. Vilnis;K. Clarkson;A. McCallum
- 通讯作者:Michael Boratko;Dongxu Zhang;Nicholas Monath;L. Vilnis;K. Clarkson;A. McCallum
An Evaluative Measure of Clustering Methods Incorporating Hyperparameter Sensitivity
- DOI:10.1609/aaai.v36i7.20747
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Siddhartha Mishra;Nicholas Monath;Michael Boratko;Ari Kobren;A. McCallum
- 通讯作者:Siddhartha Mishra;Nicholas Monath;Michael Boratko;Ari Kobren;A. McCallum
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew McCallum其他文献
An Interoperable Multimedia Catalog System for Electronic Commerce.
用于电子商务的可互操作多媒体目录系统。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
William W. Cohen;Andrew McCallum;D. Quass - 通讯作者:
D. Quass
Scaling Within Document Coreference to Long Texts
文档共指内的缩放到长文本
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Raghuveer Thirukovalluru;Nicholas Monath;K. Shridhar;M. Zaheer;Mrinmaya Sachan;Andrew McCallum - 通讯作者:
Andrew McCallum
ezCoref : A Scalable Approach for Collecting Crowdsourced Annotations for Coreference Resolution
ezCoref:一种收集众包注释以进行共指解析的可扩展方法
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Crowdsourced;David Bamman;Olivia Lewke;Rachel Bawden;Rico Sennrich;Alexandra Birch;Ari Bornstein;Arie Cattan;Ido Dagan;Hong Chen;Zhenhua Fan;Hao Lu;Alan Yuille;Eduard Hovy;Mitch Marcus;M. Palmer;Lance;Rodney Huddleston. 2002;Frédéric Landragin;T. Poibeau;Bernard Vic;Belinda Z. Li;Gabriel Stanovsky;Robert L Logan;Andrew McCallum;Sameer Singh - 通讯作者:
Sameer Singh
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
PaRaDe:使用大型语言模型的演示进行段落排名
- DOI:
10.48550/arxiv.2310.14408 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Drozdov;Honglei Zhuang;Zhuyun Dai;Zhen Qin;Razieh Rahimi;Xuanhui Wang;Dana Alon;Mohit Iyyer;Andrew McCallum;Donald Metzler;Kai Hui - 通讯作者:
Kai Hui
Every Answer Matters: Evaluating Commonsense with Probabilistic Measures
每个答案都很重要:用概率度量评估常识
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Qi Cheng;Michael Boratko;Pranay Kumar Yelugam;T. O’Gorman;Nalini Singh;Andrew McCallum;X. Li - 通讯作者:
X. Li
Andrew McCallum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew McCallum', 18)}}的其他基金
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
- 批准号:
2244805 - 财政年份:2023
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
- 批准号:
1922090 - 财政年份:2019
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
- 批准号:
1534431 - 财政年份:2015
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
III: Medium: Constructing Knowledge Bases by Extracting Entity-Relations and Meanings from Natural Language via "Universal Schema"
III:媒介:通过“通用模式”从自然语言中提取实体关系和含义来构建知识库
- 批准号:
1514053 - 财政年份:2015
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
The Fourth Northeast Student Colloquium on Artificial Intelligence
第四届东北学生人工智能学术研讨会
- 批准号:
1036017 - 财政年份:2010
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
CI-ADDO-EN: Flexible Machine Learning for Natural Language in the MALLET Toolkit
CI-ADDO-EN:MALLET 工具包中自然语言的灵活机器学习
- 批准号:
0958392 - 财政年份:2010
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
RI-Medium: Collaborative Research: Dynamically-Structured Conditional Random Fields for Complex, Natural Domains
RI-Medium:协作研究:复杂自然域的动态结构条件随机场
- 批准号:
0803847 - 财政年份:2008
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
CRI: Collaborative Research: Improving Experimental Computer Science with a Searchable Web Portal for Data Sets
CRI:协作研究:通过可搜索的数据集门户网站改进实验计算机科学
- 批准号:
0551597 - 财政年份:2006
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts
ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具
- 批准号:
0427594 - 财政年份:2004
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311296 - 财政年份:2023
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
- 批准号:
2211907 - 财政年份:2022
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant
CCF: Medium: Inference with dynamic deep probabilistic models
CCF:中:使用动态深度概率模型进行推理
- 批准号:
2212506 - 财政年份:2022
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices - A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 - 设备到系统的方法
- 批准号:
2106260 - 财政年份:2021
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
SHF: Medium: Formally Verified Compilation of Probabilistic Programs
SHF:中:概率程序的正式验证编译
- 批准号:
2106559 - 财政年份:2021
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Probabilistic Computing Through Integrated Nano-devices – A Device to Systems Approach
合作研究:FET:中:通过集成纳米设备进行概率计算 — 设备到系统方法
- 批准号:
2106501 - 财政年份:2021
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
III: Medium: Visually Interactive Neural Probabilistic Models of Language
III:媒介:语言的视觉交互神经概率模型
- 批准号:
1901030 - 财政年份:2019
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
RI: Medium: Approximation Algorithms for Probabilistic Graphical Models with Constraints
RI:中:带约束的概率图形模型的近似算法
- 批准号:
1065618 - 财政年份:2011
- 资助金额:
$ 84.99万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Enabling and Advancing Human and Probabilistic Context Awareness for Smart Facilities and Elder Care
CPS:中:协作研究:实现和促进智能设施和老年人护理的人类和概率情境意识
- 批准号:
1035565 - 财政年份:2010
- 资助金额:
$ 84.99万 - 项目类别:
Standard Grant