DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials

DMREF:协作研究:合成基因组:新材料合成的数据挖掘

基本信息

  • 批准号:
    1534431
  • 负责人:
  • 金额:
    $ 36.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL:Development of new materials is the key to addressing many of the technical challenges our society faces from energy storage to water treatment and purification. To offer just a few examples: in the oil industry, new materials are needed to withstand aggressive conditions, where failure comes with tremendous cost; electrified vehicle drive trains will be advanced by higher performing battery electrodes; carbon dioxide capture requires inexpensive new materials with the proper thermodynamic and kinetic behavior towards absorption and release. The rapid design of novel materials has been transformed by approaches where properties for many tens of thousands of materials can be predicted or inferred by a computer. The pace of commercially-realized advanced materials seems now to be limited by trial-and-error synthesis techniques. In other words, researchers have accelerated the process of knowing what to make such that the bottleneck is now how to make the structures. This research will learn from existing knowledge to develop insight on the synthesis of inorganic compounds. The analytical foundation of these activities stems from advances in machine learning that has allowed computers to excel in typically "human" tasks such as health care diagnoses and game show participation. This research will further accelerate the goals of efforts such as the Materials Genome Initiative for Global Competitiveness by enabling efficient synthesis of novel materials thereby speeding up evaluation of newly suggested materials.TECHNICAL:Materials are a key bottleneck in many technological advances such as efficient catalysis, clean energy generation, and water filtration. Materials Genome Initiative-style efforts have produced several examples of computationally designed materials in the fields of energy storage, catalysis, thermoelectrics, and hydrogen storage, as well as large data resources that can be used to screen for potentially transformative compounds. These successes in accelerated materials design have moved the bottleneck in materials development towards the synthesis of novel compounds, and much of the momentum and efficiency gained in the design process becomes gated by trial-and-error synthesis techniques. This research will do for solid state advanced materials synthesis what modern computational methods are doing for materials properties: Build predictive tools for synthesis so that targeted compounds can be synthesized more rapidly. This work will combine knowledge regarding synthesis, first principles modeling, and data mining to suggest synthesis routes for novel compounds.
非技术:新材料的开发是解决我们社会面临的许多技术挑战的关键,从能源储存到水处理和净化。举几个例子:在石油行业,需要新材料来承受恶劣的条件,在这种条件下,失败会带来巨大的成本;更高性能的电池电极将推动电动汽车传动系统的发展;二氧化碳捕获需要廉价的新材料,具有适当的吸收和释放热力学和动力学行为。通过计算机可以预测或推断成千上万种材料的特性,这种方法已经改变了新材料的快速设计。商业上实现先进材料的步伐现在似乎受到试错合成技术的限制。换句话说,研究人员已经加快了了解制造什么的过程,现在的瓶颈是如何制造这些结构。这项研究将从现有的知识中学习,以发展对无机化合物合成的见解。这些活动的分析基础源于机器学习的进步,这使得计算机在医疗诊断和游戏节目参与等典型的“人类”任务中表现出色。这项研究将进一步加速诸如材料基因组计划的目标,使新材料的有效合成成为可能,从而加快对新材料的评估。技术:材料是许多技术进步的关键瓶颈,如高效催化、清洁能源发电和水过滤。材料基因组计划式的努力已经在能源储存、催化、热电和储氢领域产生了几个计算设计材料的例子,以及可用于筛选潜在变革性化合物的大型数据资源。这些加速材料设计的成功已经将材料开发的瓶颈移向了新化合物的合成,并且在设计过程中获得的大部分动力和效率都被试错合成技术所限制。这项研究将为固态先进材料合成提供现代计算方法为材料特性所做的工作:建立合成预测工具,以便更快地合成目标化合物。这项工作将结合有关合成、第一性原理建模和数据挖掘的知识来建议新化合物的合成路线。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew McCallum其他文献

An Interoperable Multimedia Catalog System for Electronic Commerce.
用于电子商务的可互操作多媒体目录系统。
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William W. Cohen;Andrew McCallum;D. Quass
  • 通讯作者:
    D. Quass
Scaling Within Document Coreference to Long Texts
文档共指内的缩放到长文本
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raghuveer Thirukovalluru;Nicholas Monath;K. Shridhar;M. Zaheer;Mrinmaya Sachan;Andrew McCallum
  • 通讯作者:
    Andrew McCallum
ezCoref : A Scalable Approach for Collecting Crowdsourced Annotations for Coreference Resolution
ezCoref:一种收集众包注释以进行共指解析的可扩展方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Crowdsourced;David Bamman;Olivia Lewke;Rachel Bawden;Rico Sennrich;Alexandra Birch;Ari Bornstein;Arie Cattan;Ido Dagan;Hong Chen;Zhenhua Fan;Hao Lu;Alan Yuille;Eduard Hovy;Mitch Marcus;M. Palmer;Lance;Rodney Huddleston. 2002;Frédéric Landragin;T. Poibeau;Bernard Vic;Belinda Z. Li;Gabriel Stanovsky;Robert L Logan;Andrew McCallum;Sameer Singh
  • 通讯作者:
    Sameer Singh
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
PaRaDe:使用大型语言模型的演示进行段落排名
  • DOI:
    10.48550/arxiv.2310.14408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Drozdov;Honglei Zhuang;Zhuyun Dai;Zhen Qin;Razieh Rahimi;Xuanhui Wang;Dana Alon;Mohit Iyyer;Andrew McCallum;Donald Metzler;Kai Hui
  • 通讯作者:
    Kai Hui
Every Answer Matters: Evaluating Commonsense with Probabilistic Measures
每个答案都很重要:用概率度量评估常识
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Cheng;Michael Boratko;Pranay Kumar Yelugam;T. O’Gorman;Nalini Singh;Andrew McCallum;X. Li
  • 通讯作者:
    X. Li

Andrew McCallum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew McCallum', 18)}}的其他基金

Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
  • 批准号:
    2244805
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
RI: Medium: Probabilistic Box Embeddings
RI:中:概率框嵌入
  • 批准号:
    2106391
  • 财政年份:
    2021
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: The Synthesis Genome: Data Mining for Synthesis of New Materials
DMREF:协作研究:合成基因组:新材料合成的数据挖掘
  • 批准号:
    1922090
  • 财政年份:
    2019
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
RI: Medium: Extreme Clustering
RI:中:极端集群
  • 批准号:
    1763618
  • 财政年份:
    2018
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
III: Medium: Constructing Knowledge Bases by Extracting Entity-Relations and Meanings from Natural Language via "Universal Schema"
III:媒介:通过“通用模式”从自然语言中提取实体关系和含义来构建知识库
  • 批准号:
    1514053
  • 财政年份:
    2015
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
The Fourth Northeast Student Colloquium on Artificial Intelligence
第四届东北学生人工智能学术研讨会
  • 批准号:
    1036017
  • 财政年份:
    2010
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
CI-ADDO-EN: Flexible Machine Learning for Natural Language in the MALLET Toolkit
CI-ADDO-EN:MALLET 工具包中自然语言的灵活机器学习
  • 批准号:
    0958392
  • 财政年份:
    2010
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
RI-Medium: Collaborative Research: Dynamically-Structured Conditional Random Fields for Complex, Natural Domains
RI-Medium:协作研究:复杂自然域的动态结构条件随机场
  • 批准号:
    0803847
  • 财政年份:
    2008
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
CRI: Collaborative Research: Improving Experimental Computer Science with a Searchable Web Portal for Data Sets
CRI:协作研究:通过可搜索的数据集门户网站改进实验计算机科学
  • 批准号:
    0551597
  • 财政年份:
    2006
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: (ACS+NHS)-(dmc+soc): Machine Learning for Sequences and Structured Data: Tools for Non-Experts
ITR:协作研究:(ACS NHS)-(dmc soc):序列和结构化数据的机器学习:非专家工具
  • 批准号:
    0427594
  • 财政年份:
    2004
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
  • 批准号:
    2323715
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2323667
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
  • 批准号:
    2323719
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
  • 批准号:
    2323936
  • 财政年份:
    2023
  • 资助金额:
    $ 36.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了