ITR-(ASE+EVS)- (dmc+sim): Tracking Environmental Change through the Data Resources of the Bird-monitoring Community

ITR-(ASE EVS)- (dmc sim):通过鸟类监测社区的数据资源跟踪环境变化

基本信息

项目摘要

Cornell University has been granted an award to address a fundamental problem in population biology: How can we estimate true abundance of wild bird populations across North America? They approach this problem from three directions. First, they will use one of the largest and longest-running resources of environmental time-series data sets in existence by organizing the distributed resources of observation-based bird monitoring projects. Second, they will develop novel data analysis methods targeted for analyzing abundance of wild bird populations across North America. Their data mining approaches include ensemble learning, statistical smoothing, multi-task machine learning, and the estimation of change in abundance over time to quantify variation in spatio-temporal variation in abundance and to estimate the impact of environmental conditions. Third, they will make all data and analysis tools available online to allow browsing of bird-monitoring data. Fast response times are guaranteed through novel methods for approximate results to data-exploration queries. In addition to advancing research both in computer science and population biology, they will expose advances in high performance computing and data analysis to new audiences, from biologists, conservation agencies, and land planners to school classrooms and through their website to the literally millions of people who watch and appreciate wild birds. They will enable online interpretation of the results of their analyses and computations through web-based data visualizations and active dissemination and use of this information through collaborative education and conservation programs.
康奈尔大学被授予一个奖项,以解决种群生物学中的一个基本问题:我们如何估计整个北美野生鸟类种群的真实丰度?他们从三个方面来处理这个问题。首先,他们将通过组织基于观察的鸟类监测项目的分布式资源,使用现有的最大和运行时间最长的环境时间序列数据集资源之一。其次,他们将开发新的数据分析方法,目标是分析北美各地野生鸟类的数量。他们的数据挖掘方法包括集成学习、统计平滑、多任务机器学习和估计丰度随时间的变化,以量化丰度时空变化的变化并估计环境条件的影响。第三,他们将使所有数据和分析工具在线可用,以便浏览鸟类监测数据。通过数据探索查询的近似结果的新方法,保证了快速响应时间。除了推进计算机科学和种群生物学的研究外,他们还将向新的受众展示高性能计算和数据分析方面的进展,从生物学家、保护机构和土地规划师到学校教室,并通过他们的网站向真正意义上的数百万观看和欣赏野生鸟类的人展示。它们将通过基于网络的数据可视化对其分析和计算结果进行在线解释,并通过合作教育和保护方案积极传播和使用这些信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Kelling其他文献

Steven Kelling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Kelling', 18)}}的其他基金

Collaborative Research: ABI Innovation: Dark Ecology: Deep Learning and Massive Gaussian Processes to Uncover Biological Signals in Weather Radar
合作研究:ABI 创新:黑暗生态:深度学习和大规模高斯过程揭示天气雷达中的生物信号
  • 批准号:
    1661329
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ABI Sustaining: eBird: Maintaining the Cyberinfrastructure to Support the Collection, Storage, Archive, Analysis, and Access to a Global Biodiversity Data Resource
ABI 维持:eBird:维护网络基础设施以支持全球生物多样性数据资源的收集、存储、存档、分析和访问
  • 批准号:
    1356308
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: Advancing Map of Life's Impact and Capacity for Sharing, Integrating, and Using Global Spatial Biodiversity Knowledge
合作研究:ABI 开发:推进生命影响地图和共享、整合和使用全球空间生物多样性知识的能力
  • 批准号:
    1262396
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SoCS: Collaborative Research: A Human Computational Approach for Improving Data Quality in Citizen Science Projects
SoCS:协作研究:提高公民科学项目数据质量的人类计算方法
  • 批准号:
    1209589
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
  • 批准号:
    1125098
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: Gulf Coast Oil Spill Biodiversity Tracker. A Volunteer-based Observation Network to Monitor the Impact of Oil on Organisms along the Gulf Coast
RAPID:墨西哥湾沿岸漏油生物多样性追踪器。
  • 批准号:
    1049363
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
"The Biodiversity Analysis Pipeline"
“生物多样性分析管道”
  • 批准号:
    0734857
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-Scaled Data in Ecology: Scale Dependent Patterns in the Environment
生态学中的多尺度数据:环境中的尺度依赖模式
  • 批准号:
    0542868
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SEI+II:Ecological Discovery & Inference: Tools for Data-driven Exploration and Testing of Observational Data
SEI II:生态发现
  • 批准号:
    0612031
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Science Knowledge and Education Network Building a User Base around Scientific Publications: Editing Online Content and Annotating Scientific Materials
科学知识和教育网络围绕科学出版物建立用户群:编辑在线内容和注释科学材料
  • 批准号:
    0435016
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ITR-(ASE+EVS)-(dmc+sim): Coastal Modeling and Management
合作研究:ITR-(ASE EVS)-(dmc sim):海岸建模和管理
  • 批准号:
    0427115
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
ITR: Collaborative Research (ASE+EVS)-(dmc+sim): Data Driven Simulation of the Subsurface: Optimization and Uncertainty Estimation
ITR:协作研究 (ASE EVS)-(dmc sim):数据驱动的地下模拟:优化和不确定性估计
  • 批准号:
    0426241
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: ITR-(ASE+EVS)-(dmc+sim) Data Driven Simulation of the Subsurface: Optimization and Uncertainty Estimation
合作研究:ITR-(ASE EVS)-(dmc sim) 地下数据驱动模拟:优化和不确定性估计
  • 批准号:
    0426354
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: ITR- (ASE+EVS)-(dmc+sim): Coastal Modeling and Management
合作研究:ITR- (ASE EVS)-(dmc sim):海岸建模与管理
  • 批准号:
    0426811
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: ITR-(ASE+EVS)-(dmc+sim): Coastal Modeling and Management
合作研究:ITR-(ASE EVS)-(dmc sim):海岸建模和管理
  • 批准号:
    0427014
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
"Collaborative Research"ITR-(ASE+EVS)-dmv+sim):Data Driven Simulation of the Subsurface: Optimization and Uncertainty Estimation
“协作研究”ITR-(ASE EVS)-dmv sim):数据驱动的地下模拟:优化和不确定性估计
  • 批准号:
    0427005
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了