Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
基本信息
- 批准号:1125098
- 负责人:
- 金额:$ 121.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An interdisciplinary team of computer scientists, statisticians, and ornithologists will develop novel computer science methods and apply them to the challenge of understanding the annual migration of birds across North America, which is one of the most complex and dynamic natural phenomena on the planet. While direct observation of migrating birds is limited to a handful of birds wearing tracking devices, other sources of data provide partial information about migration that, when appropriately combined, will provide insight into migration at a scale previously unimaginable. These sources include a continent-wide network of volunteer bird watchers, night flight calls captured by a network of acoustic monitoring stations, continent-scale weather patterns gathered by a network of weather stations, and clouds of migrating birds detected at night by WSR-88D weather radar stations. To analyze these data, the team will develop two innovative machine learning techniques-Collective Graphical Models (CGMs) and Semi-Parametric Latent Process Models (SLPMs). The resulting model will be able to identify the complex conditions governing the dynamics of migration behavior including the choice of migratory pathways, the factors that influence when birds migrate, and the speed and duration of each night's movements. CGMs greatly extend the scope of phenomena that can be captured with graphical models. Under suitable conditions, a CGM is able to recover a model of the behavior of individuals using only collective observations.For BirdCast, it will construct a model of individual bird dynamics from the collective observations provided by birders, acoustic and weather stations, and weather radar. Once the model is constructed, it will be applied to live data feeds (bird sightings, acoustic detections, radar detections, and weather forecasts) to predict bird migration in real time. SLPMs are an extension of latent process models, such as the CGM for bird migration, in which the dynamics of a process is represented by latent variables that are observed only indirectly. In an SLPM, the conditional probability distribution of each variable is modeled using flexible, non-parametric methods from machine learning, such as boosted regression trees. Introducing such flexible methods such as CGMs and SLPMs into latent variable models raises difficult challenges for model fitting and validation. Preventing over-fitting will require the creation of novel information regularization and latent model cross-validation methods to enforce latent variable semantics.The proposed work will allow, for the first time, real-time predictions of bird migrations: when they migrate, where they migrate, and how far they will be flying. Accurate models of migration have broad application for basic research by allowing researchers to understand behavioral aspects of migration, how migration timing and pathways respond to variation in climatic conditions, and whether linkages exist between annual variation in migration timing and subsequent inter-annual changes in population size.BirdCast will expand opportunities for the public to participate in the gathering of data and its analysis. The existing data set has more than 60 million observations, and the size is growing exponentially. Last year, volunteers contributed more than 1.3 million hours observing birds. Student engagement in the research is significant as well.
一个由计算机科学家、统计学家和鸟类学家组成的跨学科团队将开发新颖的计算机科学方法,并将其应用于理解北美鸟类年度迁徙的挑战,这是地球上最复杂和最动态的自然现象之一。虽然对候鸟的直接观察仅限于少数佩戴跟踪设备的鸟类,但其他数据来源提供了有关迁徙的部分信息,如果适当结合,将以前所未有的规模深入了解迁徙。这些来源包括全大陆范围的志愿鸟类观察者网络,声学监测站网络捕获的夜间飞行呼叫,气象站网络收集的大陆尺度天气模式,以及WSR-88 D气象雷达站在夜间探测到的候鸟云。为了分析这些数据,该团队将开发两种创新的机器学习技术-集体图形模型(CGMs)和半参数潜在过程模型(SLPMs)。由此产生的模型将能够识别管理迁移行为动态的复杂条件,包括迁移路径的选择,影响鸟类迁移的因素以及每晚运动的速度和持续时间。CGM极大地扩展了可以用图形模型捕获的现象的范围。在适当的条件下,CGM能够仅使用集体观测来恢复个体行为的模型。对于BirdCast,它将根据观鸟者、声学和气象站以及天气雷达提供的集体观测来构建个体鸟类动力学模型。一旦模型构建完成,它将被应用于实时数据(鸟类目击、声学探测、雷达探测和天气预报),以真实的时间预测鸟类迁徙。SLPM是潜过程模型的扩展,例如鸟类迁徙的CGM,其中过程的动态由仅间接观察的潜变量表示。在SLPM中,每个变量的条件概率分布使用来自机器学习的灵活的非参数方法建模,例如提升回归树。将CGM和SLPM等灵活的方法引入潜变量模型,对模型拟合和验证提出了困难的挑战。防止过度拟合将需要创建新的信息正则化和潜在模型交叉验证方法,以执行潜在变量Semantics.The拟议的工作将首次允许实时预测鸟类迁徙:它们何时迁徙,在哪里迁徙,以及它们将飞多远。准确的迁移模型可广泛应用于基础研究,使研究人员了解迁移的行为方面,迁移时间和路径如何对气候条件的变化作出反应,以及迁移时间的年度变化与随后的人口规模年际变化之间是否存在联系。 现有的数据集有超过6000万个观测结果,而且规模正在呈指数级增长。去年,志愿者贡献了130多万小时观察鸟类。 学生参与研究也很重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Kelling其他文献
Steven Kelling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Kelling', 18)}}的其他基金
Collaborative Research: ABI Innovation: Dark Ecology: Deep Learning and Massive Gaussian Processes to Uncover Biological Signals in Weather Radar
合作研究:ABI 创新:黑暗生态:深度学习和大规模高斯过程揭示天气雷达中的生物信号
- 批准号:
1661329 - 财政年份:2017
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
ABI Sustaining: eBird: Maintaining the Cyberinfrastructure to Support the Collection, Storage, Archive, Analysis, and Access to a Global Biodiversity Data Resource
ABI 维持:eBird:维护网络基础设施以支持全球生物多样性数据资源的收集、存储、存档、分析和访问
- 批准号:
1356308 - 财政年份:2014
- 资助金额:
$ 121.79万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Development: Advancing Map of Life's Impact and Capacity for Sharing, Integrating, and Using Global Spatial Biodiversity Knowledge
合作研究:ABI 开发:推进生命影响地图和共享、整合和使用全球空间生物多样性知识的能力
- 批准号:
1262396 - 财政年份:2014
- 资助金额:
$ 121.79万 - 项目类别:
Continuing Grant
SoCS: Collaborative Research: A Human Computational Approach for Improving Data Quality in Citizen Science Projects
SoCS:协作研究:提高公民科学项目数据质量的人类计算方法
- 批准号:
1209589 - 财政年份:2012
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
RAPID: Gulf Coast Oil Spill Biodiversity Tracker. A Volunteer-based Observation Network to Monitor the Impact of Oil on Organisms along the Gulf Coast
RAPID:墨西哥湾沿岸漏油生物多样性追踪器。
- 批准号:
1049363 - 财政年份:2010
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
"The Biodiversity Analysis Pipeline"
“生物多样性分析管道”
- 批准号:
0734857 - 财政年份:2008
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Multi-Scaled Data in Ecology: Scale Dependent Patterns in the Environment
生态学中的多尺度数据:环境中的尺度依赖模式
- 批准号:
0542868 - 财政年份:2006
- 资助金额:
$ 121.79万 - 项目类别:
Continuing Grant
SEI+II:Ecological Discovery & Inference: Tools for Data-driven Exploration and Testing of Observational Data
SEI II:生态发现
- 批准号:
0612031 - 财政年份:2006
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
The Science Knowledge and Education Network Building a User Base around Scientific Publications: Editing Online Content and Annotating Scientific Materials
科学知识和教育网络围绕科学出版物建立用户群:编辑在线内容和注释科学材料
- 批准号:
0435016 - 财政年份:2004
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
ITR-(ASE+EVS)- (dmc+sim): Tracking Environmental Change through the Data Resources of the Bird-monitoring Community
ITR-(ASE EVS)- (dmc sim):通过鸟类监测社区的数据资源跟踪环境变化
- 批准号:
0427914 - 财政年份:2004
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CDI-Type I: Collaborative Research: High-Dimensional Phase-Space Subdivisions for Seismic Imaging
CDI-Type I:协作研究:地震成像的高维相空间细分
- 批准号:
1327658 - 财政年份:2013
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI Type II: Dynamics and Control of Cardiac Tissue
合作研究:CDI II 型:心脏组织的动力学和控制
- 批准号:
1341128 - 财政年份:2012
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI- Type II: Towards Analyzing Complex Petascale Datasets: The Milky Way Laboratory
合作研究:CDI-II 型:分析复杂千万亿次数据集:银河系实验室
- 批准号:
1124453 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research: A Computational Thinking Approach to Mapping Critical Marine Mammal Habitat Through Readily-Deployable Video Systems
CDI-I 型:协作研究:通过易于部署的视频系统绘制关键海洋哺乳动物栖息地的计算思维方法
- 批准号:
1124936 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
- 批准号:
1125228 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI- Type II: Towards Analyzing Complex Petascale Datasets: The Milky Way Laboratory
合作研究:CDI-II 型:分析复杂千万亿次数据集:银河系实验室
- 批准号:
1124403 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II: First-Principles Based Control of Multi-Scale Meta-Material Assembly Process
合作研究:CDI-Type II:基于第一原理的多尺度超材料组装过程控制
- 批准号:
1124678 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
Collaborative Research: CDI-Type II: VolcanoSRI: 4D Volcano Tomography in a Large-Scale Sensor Network
合作研究:CDI-Type II:VolcanoSRI:大规模传感器网络中的 4D 火山断层扫描
- 批准号:
1125185 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
CDI-TYPE II--COLLABORATIVE RESEARCH: Using Algebraic Topology to Connect Models with Measurements in Complex Nonequilibrium Systems
CDI-TYPE II——协作研究:使用代数拓扑将模型与复杂非平衡系统中的测量联系起来
- 批准号:
1125234 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant
CDI-Type II: Collaborative Research: Dynamical processes in interdependent techno-social networks
CDI-类型 II:协作研究:相互依赖的技术社交网络中的动态过程
- 批准号:
1125290 - 财政年份:2011
- 资助金额:
$ 121.79万 - 项目类别:
Standard Grant