SEI+II:Ecological Discovery & Inference: Tools for Data-driven Exploration and Testing of Observational Data

SEI II:生态发现

基本信息

项目摘要

Researchers who study ecological systems strive to understand the factors that influence extremely complex systems, in which tens if not hundreds of environmental factors can affect the distribution and abundance of a species. Challenges in managing a species across its entire geographic range are especially great, as scaling up insights from small local studies to management over an entire continent may be impossible. Further, initial management decisions may need to be made under very short time deadlines, and in the absence of much prior knowledge about a species. Often, the necessary data to inform timely management decisions for little-known species already exist; however, what is limiting is ready access to the data and especially to the analytical tools needed to explore these data. This project joins the strengths of data mining and machine learning tools with statistical methods, to create a suite of powerful new predictive and inferential tools in a new analytical framework for data mining and machine learning that will permit extracting more relevant information from the available data and by incorporating prior information into a hybrid hierarchical/data mining model. The result will be new data-mining techniques that allow statistical inferences about large numbers of environmental variables and their potential interactions. This will greatly enhance the ability to model the landscape-level response of bird populations to multiple risk factors and to develop prescriptions for reversing population declines through land management. This project will expose new data resources and advances in computational analysis, data visualizations, and manipulations to vast new audiences: from biologists, conservation agencies, and land-use planners to school classrooms and tens of thousands of citizens who participate in environmental monitoring, including the millions of people across the country who watch birds. Additionally, the project trains new researchers in the union of powerful statistical techniques with machine learning and data mining
研究生态系统的研究人员努力了解影响极其复杂系统的因素,其中数十个甚至数百个环境因素可以影响物种的分布和丰度。在整个地理范围内管理一个物种的挑战尤其巨大,因为从小型地方研究到整个大陆的管理可能是不可能的。此外,初步管理决策可能需要在很短的期限内作出,并在缺乏有关物种的先验知识。通常情况下,已经存在为鲜为人知的物种及时作出管理决定提供信息的必要数据;然而,限制因素是随时获得数据,特别是探索这些数据所需的分析工具。 该项目将数据挖掘和机器学习工具的优势与统计方法结合起来,在数据挖掘和机器学习的新分析框架中创建一套强大的新预测和推理工具,该框架将允许从现有数据中提取更多相关信息,并将先验信息纳入混合分层/数据挖掘模型。 其结果将是新的数据挖掘技术,允许对大量环境变量及其潜在的相互作用进行统计推断。这将大大提高建立鸟类种群对多种风险因素的反应模型的能力,并制定通过土地管理扭转种群下降的处方。 该项目将向广大新受众展示新的数据资源和计算分析,数据可视化和操作方面的进展:从生物学家,保护机构和土地使用规划者到学校教室和成千上万参与环境监测的公民,包括全国数百万观鸟者。此外,该项目还培训新的研究人员,将强大的统计技术与机器学习和数据挖掘结合起来

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Kelling其他文献

Steven Kelling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Kelling', 18)}}的其他基金

Collaborative Research: ABI Innovation: Dark Ecology: Deep Learning and Massive Gaussian Processes to Uncover Biological Signals in Weather Radar
合作研究:ABI 创新:黑暗生态:深度学习和大规模高斯过程揭示天气雷达中的生物信号
  • 批准号:
    1661329
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ABI Sustaining: eBird: Maintaining the Cyberinfrastructure to Support the Collection, Storage, Archive, Analysis, and Access to a Global Biodiversity Data Resource
ABI 维持:eBird:维护网络基础设施以支持全球生物多样性数据资源的收集、存储、存档、分析和访问
  • 批准号:
    1356308
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: Advancing Map of Life's Impact and Capacity for Sharing, Integrating, and Using Global Spatial Biodiversity Knowledge
合作研究:ABI 开发:推进生命影响地图和共享、整合和使用全球空间生物多样性知识的能力
  • 批准号:
    1262396
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SoCS: Collaborative Research: A Human Computational Approach for Improving Data Quality in Citizen Science Projects
SoCS:协作研究:提高公民科学项目数据质量的人类计算方法
  • 批准号:
    1209589
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II: BirdCast: Novel Machine Learning Methods for Understanding Continent-Scale Bird Migration
合作研究:CDI-Type II:BirdCast:用于理解大陆规模鸟类迁徙的新型机器学习方法
  • 批准号:
    1125098
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RAPID: Gulf Coast Oil Spill Biodiversity Tracker. A Volunteer-based Observation Network to Monitor the Impact of Oil on Organisms along the Gulf Coast
RAPID:墨西哥湾沿岸漏油生物多样性追踪器。
  • 批准号:
    1049363
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
"The Biodiversity Analysis Pipeline"
“生物多样性分析管道”
  • 批准号:
    0734857
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multi-Scaled Data in Ecology: Scale Dependent Patterns in the Environment
生态学中的多尺度数据:环境中的尺度依赖模式
  • 批准号:
    0542868
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR-(ASE+EVS)- (dmc+sim): Tracking Environmental Change through the Data Resources of the Bird-monitoring Community
ITR-(ASE EVS)- (dmc sim):通过鸟类监测社区的数据资源跟踪环境变化
  • 批准号:
    0427914
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Science Knowledge and Education Network Building a User Base around Scientific Publications: Editing Online Content and Annotating Scientific Materials
科学知识和教育网络围绕科学出版物建立用户群:编辑在线内容和注释科学材料
  • 批准号:
    0435016
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Ecological and Evolutionary Constraints on the Temperature Dependence of Microbial Community Respiration
微生物群落呼吸温度依赖性的生态和进化限制
  • 批准号:
    NE/Y000889/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
  • 批准号:
    2345129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
  • 批准号:
    10109956
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Environmental and ecological drivers of tropical peatland methane dynamics across spatial scales
热带泥炭地甲烷空间尺度动态的环境和生态驱动因素
  • 批准号:
    NE/X015238/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
From Crisis to Resilience: The Social - Ecological Systems (SES) Approach to Tourism Recovery in East Asia
从危机到恢复力:东亚旅游业复苏的社会生态系统(SES)方法
  • 批准号:
    23K25113
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了