SST: Novel Sensor Platforms Based on the Structural Integration of an Organic Light-Emitting Device, a Luminescent Sensing Element, and a Thin Film Si-Based Photodetector
SST:基于有机发光器件、发光传感元件和薄膜硅基光电探测器结构集成的新型传感器平台
基本信息
- 批准号:0428220
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-10-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0428220ShinarThe objective of this proposal is to develop novel photoluminescence (PL)-based sensors that are fully structurally integrated: The light source, the sensing element, and the photodetector (PD) and associated filter, are fabricated on transparent substrates and attached back-to-back. The resulting sensors could therefore be extremely compact, robust, selective, fast, autonomous, consume little power, and inexpensive. The proposal focuses on sensing oxygen, a key tool in medical, environmental, (bio)chemical, and food monitoring, and Bacillus anthracis toxin (anthrax).The intellectual merit. The central concept is the novel total structural integration of the foregoing components. The light source is an array of organic light-emitting device (OLED) pixels. The sensing elements include porous films with an embedded dye, surface immobilized species whose PL is selectively analyte-sensitive, or microfluidic channels/wells with recognition elements in solution. The PD and filter are multilayer thin films of hydrogenated nanocrystalline Si, SiGe, and/or SiC. The geometry will be "back detection," i.e., the OLED and PD pixels are fabricated on the same side of the substrate. The array of long-pass filters and PD pixels is fabricated first, followed by the OLEDs in the gaps between the PD pixels. The sensing element is fabricated on a separate substrate and attached to the OLED/PD substrate. In the complete device, the electronic circuitry (including instruction receiver and data transmitter), readout, and battery will be positioned "behind" the PD. Hence the whole device would be ~2.5"x5"x1", far more compact and less costly than any sensors currently available. The work results in a new platform for PL-based sensors, which can be further developed to multianalyte sensor microarrays. Innovative elements are (i) the complete integration of all the sensor components, and (ii) the development of sensing elements utilizing microfluidic architectures and films/surfaces tailored for specific recognition molecules, which will enhance the sensitivity and shorten the response time. Moreover, the OLEDs will be operated in a pulsed mode, which will increase their lifetime and generate negligible heat, which is crucial for heat-sensitive recognition elements and agents. Oxygen will be monitored via the PL lifetime, thus eliminating the need for frequent calibration.Different approaches will be evaluated to generate robust sensors for real-world applications. The oxygen sensor will be based on the dynamical quenching of the PL of oxygen-sensitive dyes, initially with a green OLED and Pt octaethyl porphyrin (PtOEP) dye. We will compare the sensors with dyes embedded in solid films with dyes solutions. The anthrax sensor will be based on the cleavage of certain peptides by anthrax lethal factor. Labeled peptides will be synthesized at the Protein Facility of Iowa State University (ISU), with a Forster resonance energy transfer donor and acceptor on either side of the cleavage site.The broader impacts. The sensors for the two aforementioned agents will be ideal for a broad range of applications in areas such as homeland security, medical, environmental, biological, food/brewing, and health/safety. Beyond these impacts, the devices define a new sensor platform for chemical and biological agents, which could lead to extremely compact and inexpensive multianalyte sensor microarrays. The proposed work will serve as a basis for the development of this platform. It will also expand the basic knowledge in embedding/immobilizing recognition elements, sensor design, and sensor engineering. It will also have a broad educational impact, promoting the growth of the interdisciplinary biophysics program at ISU and training students in condensed matter physics, electrical engineering, biophysics, chemistry, and molecular biology. It will be integrated with teaching by developing new experimental course modules for graduate students. Significant participation of undergraduates, including minorities and women, is planned.
这项提议的目标是开发完全结构集成的基于光致发光(PL)的新型传感器:光源、传感元件、光电探测器(PD)和相关滤光片被制造在透明衬底上并背靠背地连接。因此,由此产生的传感器可以非常紧凑、坚固、选择性、快速、自主、耗电少、价格低廉。该提案的重点是感知氧气,这是医疗、环境、(生物)化学和食品监测的关键工具,以及炭疽杆菌毒素(炭疽杆菌)。中心概念是上述组件的新颖整体结构集成。光源是有机发光器件(OLED)像素的阵列。传感元件包括具有嵌入染料的多孔膜、其荧光选择性地对分析物敏感的表面固定化物种、或在溶液中具有识别元件的微流控通道/井。Pd和滤光片是氢化纳米晶Si、SiGe和/或碳化硅的多层薄膜。几何结构将是“背面探测”,即OLED和PD像素被制造在衬底的同一侧。首先制作了长通滤光片和PD像素的阵列,然后在PD像素之间的间隙中制作OLED。该传感元件被制造在单独的基板上,并附着到OLED/PD基板上。在整个装置中,电子电路(包括指令接收器和数据发送器)、读出器和电池将被放置在PD后面。因此,整个设备将是大约2.5“x5”x1“,比目前任何可用的传感器都要紧凑得多,成本更低。这项工作为基于PL的传感器提供了一个新的平台,可以进一步开发成多分析传感器微阵列。创新的元素是(I)所有传感器组件的完全集成,以及(Ii)利用微流控体系结构和为特定识别分子量身定做的薄膜/表面开发传感器元件,这将提高灵敏度并缩短响应时间。此外,OLED将在脉冲模式下运行,这将延长其寿命并产生可以忽略不计的热量,这对热敏识别元件和试剂至关重要。氧将通过光致发光寿命进行监测,从而消除了频繁校准的需要。将评估不同的方法来生成用于现实世界应用的坚固的传感器。氧传感器将基于氧敏感染料的荧光的动态猝灭,最初使用绿色OLED和铂八乙基卟啉(PtOEP)染料。我们将把传感器与嵌入固体薄膜的染料与染料溶液进行比较。炭疽传感器将基于炭疽致死因子对某些多肽的裂解。标记的多肽将在爱荷华州立大学(ISU)的蛋白质设施中合成,在裂解位点的两侧都有一个Forster共振能量转移供体和受体。上述两种试剂的传感器将是国土安全、医疗、环境、生物、食品/酿造和健康/安全等领域广泛应用的理想选择。除了这些影响之外,这些设备还为化学和生物制剂定义了一个新的传感器平台,这可能导致极其紧凑和廉价的多分析传感器微阵列。拟议的工作将作为这一平台发展的基础。它还将扩展嵌入/固定识别元件、传感器设计和传感器工程方面的基础知识。它还将产生广泛的教育影响,促进ISU跨学科生物物理学项目的发展,并培训学生凝聚态物理、电气工程、生物物理、化学和分子生物学。通过为研究生开发新的实验课程模块,将其与教学相结合。计划让包括少数族裔和妇女在内的本科生大量参与。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Shinar其他文献
Amorphous and nanocrystalline p–i–n Si and Si,Ge photodetectors for structurally integrated O<sub>2</sub> sensors
- DOI:
10.1016/j.jnoncrysol.2007.09.065 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:
- 作者:
Debju Ghosh;Ruth Shinar;Vikram Dalal;Zhaoqun Zhou;Joseph Shinar - 通讯作者:
Joseph Shinar
Organic thin-film magnetometers
有机薄膜磁力计
- DOI:
10.1038/nmat3390 - 发表时间:
2012-07-24 - 期刊:
- 影响因子:38.500
- 作者:
Joseph Shinar - 通讯作者:
Joseph Shinar
Joseph Shinar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Shinar', 18)}}的其他基金
Collaborative: Room-temperature electrophosphorescence from all-organic OLEDs
合作:全有机 OLED 的室温电致磷光
- 批准号:
1202309 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ACT/SGER: Novel Anthrax Sensors Based on the Structural Integration of an Organic Light-Emitting Device and a Luminescent Sensing Component
ACT/SGER:基于有机发光器件和发光传感元件结构集成的新型炭疽传感器
- 批准号:
0345189 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Novel Optically Nonlinear and Luminescent Conjugated Polymers
新型光学非线性和发光共轭聚合物
- 批准号:
9202981 - 财政年份:1992
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Novel-miR-1134调控LHCGR的表达介导拟
穴青蟹卵巢发育的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
- 批准号:82304677
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
- 批准号:32002421
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
- 批准号:31902347
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
A novel granular stress sensor for soil exploration
一种用于土壤勘探的新型颗粒应力传感器
- 批准号:
DP240101464 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Otis Brux-Sensor Night Guard - a novel wireless custom night guard system with pressure sensors to quantitatively measure bite compression forces and alleviate sleep bruxism
Otis Brux-Sensor Night Guard - 一种新型无线定制夜间防护系统,带有压力传感器,可定量测量咬合压力并缓解睡眠磨牙症
- 批准号:
10684494 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Novel wearable sensor calibration and validation for automated measurement of screen time in children
新型可穿戴传感器校准和验证,用于自动测量儿童屏幕时间
- 批准号:
10585840 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Development of a novel sensor for the real-time measurement of mitral coaptation force
开发一种实时测量二尖瓣接合力的新型传感器
- 批准号:
10601890 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Beginnings: Sensor Technology as a Vehicle to Cultivate Experiential Learning for Emerging and Novel Technologies
起点:传感器技术作为培养新兴新技术体验式学习的工具
- 批准号:
2322772 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cooperative Agreement
Design and Fabrication of a Novel Biomass Sensor
新型生物质传感器的设计与制造
- 批准号:
EP/Y027914/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Development of a Novel Acoustic Based State-of-Charge Sensor (SOC) for Lithium-Ion Batteries
开发用于锂离子电池的新型声学充电状态传感器 (SOC)
- 批准号:
BB/X003264/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
A novel sensor platform for early detection of pancreatic cancer
用于早期检测胰腺癌的新型传感器平台
- 批准号:
BB/X004775/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant














{{item.name}}会员




