A novel sensor platform for early detection of pancreatic cancer
用于早期检测胰腺癌的新型传感器平台
基本信息
- 批准号:BB/X004775/1
- 负责人:
- 金额:$ 23.17万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to develop a point-of-care diagnostic tool for the early-onset detection of pancreatic cancer. Pancreatic cancer is predicted to become the second leading cause of cancer-death in the next few years. It is mostly asymptomatic, and currently 80% of cases are diagnosed at an advanced stage. Late detection leads to an extremely poor survival prognosis, with average survival of around 5 months after diagnosis. An analysis methodology that leads to early diagnosis, such as that proposed here, will have a profoundly positive effect on pancreatic cancer survival. When tumours are present in the body, specific proteins, indicative of disease progression, are produced and appear in the blood. These proteins, referred to as biomarkers, are indicators of disease. In pancreatic cancer there are two significant biomarkers: CA19-9 and CEA. Unfortunately, these biomarkers alone cannot be used to make a diagnosis in the general population. However, a large number of other proteins have been identified and linked to disease progression. For our project, 30 biomarkers indicative of pancreatic cancer have been carefully selected. Current methods to identify key biomarkers lack the necessary sensitivity and specificity for the detection of early-stage pancreatic cancer, are time consuming to run, and require skilled operators to ensure results are reliable. Therefore, a new approach is needed to achieve early onset pancreatic cancer detection. Effective point-of-care diagnosis will significantly reduce preventable cases. Here we propose to develop an integrated sensor platform that makes measurements indicating the presence of biomarkers using novel sensors. It will then make use of machine leaning approaches to combine these measurements with secondary data, to enhance diagnosis. The secondary data will include 'risk' factors from patient medical history, such as having diabetes. To detect biomarkers at the very low levels they manifest themselves at pancreatic cancer onset, we propose to design a novel sensitive and selective transistor-based sensor system. Normally transistors are operated by directly applying an electrical signal to their channels. Here the sensor system will be based upon an array of transistors which are tuned for the detection of specific biomarkers by using "aptamers" placed onto their channels. The detection process relies upon on specific biomarkers binding to aptamers, which acts like an input signal to change the overall transistor electrical characteristics, which can be subsequently measured. To ensure effective and reliable biomarker detection, it is essential the transistor sensors are built in a consistent fashion, especially regarding aptamer-loaded channel construction, since this greatly affects operation. To achieve this, a 3D-bioprinter will be used to deliver controlled volumes of aptamers to the transistor in an automated fashion. The experimental phase of the research will systematically progress from simple to complex detection tasks. Phase 1 of will focus on creating the sensors for initial characterisation studies. In the second phase, sensor capacity to detect known biomarker concentrations will determine the sensor sensitivity and detection limits. The final stage 3 will examine biomarker detection in serum samples from patients with pancreatic cancer at varying stages of disease progression, as well as healthy controls. Sensor data will be combined with risk-life factors to train a machine learning system to detect the presence of pancreatic cancer. Finally, we will evaluate sensor performance as a diagnostic tool to predict early-onset pancreatic cancer.
该项目旨在开发一种用于胰腺癌早期检测的即时诊断工具。预计在未来几年内,胰腺癌将成为癌症死亡的第二大原因。它大多无症状,目前80%的病例在晚期被诊断出来。晚期发现导致极差的生存预后,诊断后平均生存期约为5个月。一种导致早期诊断的分析方法,如本文所提出的,将对胰腺癌的生存产生深远的积极影响。当体内存在肿瘤时,会产生指示疾病进展的特定蛋白质并出现在血液中。这些蛋白质被称为生物标志物,是疾病的指标。在胰腺癌中,有两种重要的生物标志物:CA 19 -9和CEA。不幸的是,这些生物标志物不能单独用于在一般人群中进行诊断。然而,大量其他蛋白质已被鉴定并与疾病进展有关。对于我们的项目,已经仔细选择了30种指示胰腺癌的生物标志物。目前鉴定关键生物标志物的方法缺乏检测早期胰腺癌所必需的灵敏度和特异性,运行耗时,并且需要熟练的操作人员来确保结果可靠。因此,需要一种新的方法来实现早期胰腺癌的检测。有效的即时诊断将大大减少可预防的病例。在这里,我们建议开发一个集成的传感器平台,使用新型传感器进行指示生物标志物存在的测量。然后,它将利用机器学习方法将这些测量结果与二级数据联合收割机结合起来,以加强诊断。二级数据将包括来自患者病史的“风险”因素,例如患有糖尿病。为了在胰腺癌发病时以非常低的水平检测生物标志物,我们建议设计一种新型的灵敏和选择性的基于晶体管的传感器系统。通常,晶体管通过直接向其沟道施加电信号来操作。这里,传感器系统将基于晶体管阵列,晶体管阵列通过使用放置在其通道上的“适体”被调谐用于检测特定的生物标志物。检测过程依赖于与适体结合的特异性生物标志物,其作用类似于输入信号以改变整体晶体管电特性,其随后可以被测量。为了确保有效和可靠的生物标志物检测,必须以一致的方式构建晶体管传感器,特别是关于加载适体的通道构建,因为这极大地影响操作。为了实现这一目标,将使用3D生物打印机以自动化的方式将受控体积的适体输送到晶体管。研究的实验阶段将从简单到复杂的检测任务系统地进行。第1阶段将专注于创建用于初始表征研究的传感器。在第二阶段,传感器检测已知生物标志物浓度的能力将决定传感器的灵敏度和检测限。最后阶段3将检查处于疾病进展不同阶段的胰腺癌患者以及健康对照的血清样本中的生物标志物检测。传感器数据将与风险生活因素相结合,以训练机器学习系统来检测胰腺癌的存在。最后,我们将评估传感器作为诊断工具的性能,以预测早发性胰腺癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
                item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.author }} 
数据更新时间:{{ patent.updateTime }}
David Jenkins其他文献
THE VOICE AT THE RED WALL : A STUDY OF PHILIPPINE ROCK ART AND ETHNOGRAPHY
红墙上的声音:菲律宾岩石艺术和民族志研究
- DOI:
- 发表时间:2007 
- 期刊:
- 影响因子:0
- 作者:David Jenkins 
- 通讯作者:David Jenkins 
James Baldwin and Recognition
詹姆斯·鲍德温和认可
- DOI:10.1086/699910 
- 发表时间:2019 
- 期刊:
- 影响因子:0.3
- 作者:David Jenkins 
- 通讯作者:David Jenkins 
A model for calculating the mechanical demands of overground running
计算地上运行机械需求的模型
- DOI:
- 发表时间:2020 
- 期刊:
- 影响因子:2.2
- 作者:A. Gray;Mark H Andrews;M. Waldron;David Jenkins 
- 通讯作者:David Jenkins 
Preliminary testing of coils for the superconducting toroidal magnet for the CEBAF Large Acceptance Spectrometer (CLAS)
- DOI:10.1016/s0011-2275(05)80155-9 
- 发表时间:1994-01-01 
- 期刊:
- 影响因子:
- 作者:John Ross;Kevin Smith;Alan Street;David Jenkins;Stephen Harrison*;Richard Riggs;Julian Wiatrzyk;John O'Meara;Walter Tuzel 
- 通讯作者:Walter Tuzel 
David Jenkins的其他文献
{{
              item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi }} 
- 发表时间:{{ item.publish_year }} 
- 期刊:
- 影响因子:{{ item.factor }}
- 作者:{{ item.authors }} 
- 通讯作者:{{ item.author }} 
{{ truncateString('David Jenkins', 18)}}的其他基金
3D Radioactive Scanning System (3D-RSS)
3D放射性扫描系统(3D-RSS)
- 批准号:ST/X000842/1 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:Research Grant 
CAS: Chiral Epoxidation and Oxaziridination Catalysis with First-row Transition Metals
CAS:第一行过渡金属的手性环氧化和氧氮丙啶化催化
- 批准号:2154697 
- 财政年份:2022
- 资助金额:$ 23.17万 
- 项目类别:Continuing Grant 
Collaborative Research: Metal-Organic Nanotubes as Tunable Porous Fibers
合作研究:金属有机纳米管作为可调多孔纤维
- 批准号:2207224 
- 财政年份:2022
- 资助金额:$ 23.17万 
- 项目类别:Continuing Grant 
UoY - Nuclear Physics STFC KE and commercialisation fellow
UoY - 核物理 STFC KE 和商业化研究员
- 批准号:ST/W002086/1 
- 财政年份:2022
- 资助金额:$ 23.17万 
- 项目类别:Fellowship 
RADCASE: Functional materials for radiation detection
RADCASE:辐射检测功能材料
- 批准号:ST/W000709/1 
- 财政年份:2021
- 资助金额:$ 23.17万 
- 项目类别:Research Grant 
Collaborative Research: Characterization and Optimization of N-Heterocyclic Carbene Functionalized Nanoparticle Systems
合作研究:N-杂环卡宾功能化纳米颗粒系统的表征和优化
- 批准号:2108328 
- 财政年份:2021
- 资助金额:$ 23.17万 
- 项目类别:Standard Grant 
Nuclear Physics Consolidated Grant 21-24 - University of York
核物理综合补助金 21-24 - 约克大学
- 批准号:ST/V001035/1 
- 财政年份:2021
- 资助金额:$ 23.17万 
- 项目类别:Research Grant 
Modern African Nuclear DEtector LAboratory
现代非洲核探测器实验室
- 批准号:ST/S003118/1 
- 财政年份:2019
- 资助金额:$ 23.17万 
- 项目类别:Research Grant 
NUTRAIN: Translating nuclear applications from University of York to University of Western Cape and University of Zululand
NUTRAIN:将核应用从约克大学转移到西开普大学和祖鲁兰大学
- 批准号:ST/R002649/1 
- 财政年份:2018
- 资助金额:$ 23.17万 
- 项目类别:Research Grant 
相似国自然基金
NOD1棕榈酰化修饰通过炎症信号调控胰岛素抵抗的分子机制
- 批准号:32000529
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于隐半马尔科夫模型的无线传感器网络入侵检测系统研究
- 批准号:61101083
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于非接触测量的超高温MEMS压力传感器基础研究
- 批准号:51075375
- 批准年份:2010
- 资助金额:41.0 万元
- 项目类别:面上项目
人类NADPH sensor蛋白HSCARG调控机制研究
- 批准号:30930020
- 批准年份:2009
- 资助金额:170.0 万元
- 项目类别:重点项目
基于sensor agent的营养液组分动态测量与建模研究
- 批准号:60775014
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Wearable, Wireless Deep-tissue Sensing Patch for Continuous Monitoring of Recovery from Microsurgical Tissue Transfer
可穿戴式无线深层组织传感贴片,用于连续监测显微外科组织转移的恢复情况
- 批准号:10637093 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
A High-Throughput Screening Platform to Discover RNA Methylation Inhibitors
发现 RNA 甲基化抑制剂的高通量筛选平台
- 批准号:10705980 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
- 批准号:10603975 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:10765218 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
In Vivo Function and Metabolism Evaluation of Glaucomatous RGCs by Two-Photon Scanning Laser Ophthalmology
双光子扫描激光眼科评价青光眼 RGC 的体内功能和代谢
- 批准号:10660761 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
Closed-loop attention bias modification brain training for opioid use disorder
针对阿片类药物使用障碍的闭环注意偏差修正大脑训练
- 批准号:10699099 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:10738994 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
Single-Molecule High-Confidence Detection of miRNA Cancer Biomarkers
miRNA 癌症生物标志物的单分子高置信度检测
- 批准号:10612611 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
A Smart Semiconductor based Integrated Continuous Diabetes Monitoring Platform
基于智能半导体的集成连续糖尿病监测平台
- 批准号:10900360 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:
Development of a Colorimetric Sensor for Detection of Cerebrospinal Fluid Leaks
开发用于检测脑脊液泄漏的比色传感器
- 批准号:10602859 
- 财政年份:2023
- 资助金额:$ 23.17万 
- 项目类别:

 刷新
              刷新
            
















 {{item.name}}会员
              {{item.name}}会员
            



