Sensors: Statistical Algorithm Development for Distributed Sensor Networks with Application to Structural Health Monitoring and State Assessment
传感器:分布式传感器网络统计算法开发,应用于结构健康监测和状态评估
基本信息
- 批准号:0428585
- 负责人:
- 金额:$ 15.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT0428585PI: John SweetmanTexas Engineering Experiment StationNew statistical and random vibration techniques are developed and applied to interpret measured data from distributed sensor networks. The new methods build statistical distributions of selected random variables developed from the data and dynamic numerical models of the structure. The overall goal is to develop methodologies to identify relatively minor structural damage or changes in structural state prior to initiation of a major structural failure. Application within the project is marine risers on offshore oil-production structures and to structural health monitoring of onshore structures; each of these applications makes use of extensive measured data. The offshore application addresses vortex induced vibrations of marine risers, a complex problem due to irregular variations in system mass caused by fluid-structure interaction. These vibrations are a dominant design consideration for marine risers in high current, deep-water areas. The onshore application offers an improved methodology for monitoring the structural condition of various civil structures. The work is being done jointly between two campuses of Texas A&M University (College Station and Galveston). The project and its results will enhance the graduate and undergraduate engineering curricula at both campuses. The project also directly increases interaction between the two campuses, which will lead to greater future collaboration. This project is supported under the Sensors Initiative NSF 04-522.
摘要0428585 PI:约翰Sweetman得克萨斯工程实验站新的统计和随机振动技术的开发和应用,以解释测量数据从分布式传感器网络。新的方法建立统计分布的选定的随机变量开发的数据和动态数值模型的结构。 总体目标是开发方法,以确定相对较小的结构损伤或结构状态的变化之前,开始一个重大的结构故障。该项目中的应用是海上石油生产结构的海洋监测和陆上结构的结构健康监测;这些应用中的每一个都使用了大量的测量数据。 海上应用解决了海洋涡激振动,这是一个复杂的问题,由于流体-结构相互作用引起的系统质量的不规则变化。这些振动是在高水流、深水区域中的海洋锚的主要设计考虑因素。 陆上应用为监测各种土木结构的结构状况提供了一种改进的方法。 这项工作是在德克萨斯A M大学的两个校区(学院站和加尔维斯顿)之间联合进行的。 该项目及其成果将加强两个校区的研究生和本科生工程课程。 该项目还直接增加了两个校区之间的互动,这将导致未来更大的合作。 该项目得到了传感器倡议NSF 04-522的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Sweetman其他文献
Reduced gut bacterial translocation in European sea bass (<em>Dicentrarchus labrax</em>) fed mannan oligosaccharides (MOS)
- DOI:
10.1016/j.fsi.2010.12.020 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:
- 作者:
Silvia Torrecillas;Alex Makol;Tibiábin Benítez-Santana;María José Caballero;Daniel Montero;John Sweetman;Marisol Izquierdo - 通讯作者:
Marisol Izquierdo
Development of a three-compartment in vitro simulator of the Atlantic Salmon GI tract and associated microbial communities: SalmoSim
开发大西洋鲑鱼胃肠道和相关微生物群落的三室体外模拟器:SalmoSim
- DOI:
10.1101/2020.10.06.327858 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Raminta Kazlauskaite;B. Cheaib;Chloe Heys;U. Ijaz;S. Connelly;William T. Sloan;Julie Russell;Laura Martínez;John Sweetman;Alex Kitts;Philip McGinnity;Philip Lyons;Martin S. Llewellyn - 通讯作者:
Martin S. Llewellyn
Effects of additive iron on growth, tissue distribution, haematology and immunology of gilthead sea bream, Sparus aurata
- DOI:
10.1007/s10499-010-9326-7 - 发表时间:
2010-02-03 - 期刊:
- 影响因子:2.400
- 作者:
George Rigos;Alexandros Samartzis;Morgane Henry;Eleni Fountoulaki;Efthimia Cotou;John Sweetman;Simon Davies;Ioannis Nengas - 通讯作者:
Ioannis Nengas
John Sweetman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Sweetman', 18)}}的其他基金
Floating Offshore Wind Turbines: Conceptual Assessment of Highly Compliant Platforms using Theory, Design and Simulation
浮动式海上风力发电机:利用理论、设计和仿真对高度兼容的平台进行概念评估
- 批准号:
1133682 - 财政年份:2011
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
U.S.-Germany Planning Visit: Structural Health Monitoring Sensors for Offshore Wind Turbines
美德计划访问:海上风力发电机结构健康监测传感器
- 批准号:
0813764 - 财政年份:2008
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
CAREER: Irregular Environmental Loading and Response of Offshore Structures
职业:海上结构的不规则环境载荷和响应
- 批准号:
0448730 - 财政年份:2005
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
相似海外基金
iCyberPlatform - An innovative cybersecurity platform that uses AI, ML, Bayesian statistical models and the LDA algorithm to provide enhanced cyber defence against breaches
iCyberPlatform - 一个创新的网络安全平台,使用人工智能、机器学习、贝叶斯统计模型和 LDA 算法来提供针对违规的增强网络防御
- 批准号:
10037731 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Collaborative R&D
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2022
- 资助金额:
$ 15.65万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2021
- 资助金额:
$ 15.65万 - 项目类别:
Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2020
- 资助金额:
$ 15.65万 - 项目类别:
Discovery Grants Program - Individual
Establishment of an algorithm for assessing fall risk with considering medical and statistical perspectives
考虑医学和统计角度,建立评估跌倒风险的算法
- 批准号:
20K10323 - 财政年份:2020
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical modeling based on non-convexity with convergence guaranteed estimation algorithm
基于非凸性的保收敛估计算法的统计建模
- 批准号:
19K24340 - 财政年份:2019
- 资助金额:
$ 15.65万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
- 批准号:
RGPIN-2019-05917 - 财政年份:2019
- 资助金额:
$ 15.65万 - 项目类别:
Discovery Grants Program - Individual
SI2-SSI: Integrating the NIMBLE Statistical Algorithm Platform with Advanced Computational Tools and Analysis Workflows
SI2-SSI:将 NIMBLE 统计算法平台与高级计算工具和分析工作流程集成
- 批准号:
1550488 - 财政年份:2016
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
- 批准号:
1514128 - 财政年份:2015
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
AF: Medium: Collaborative Research: Information Compression in Algorithm Design and Statistical Physics
AF:媒介:协作研究:算法设计和统计物理中的信息压缩
- 批准号:
1514164 - 财政年份:2015
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant