Sensors: Models and Algorithms for Efficient Design and Operation of Wireless Sensor Networks

传感器:无线传感器网络高效设计和操作的模型和算法

基本信息

项目摘要

This grant provides funding for an investigation of effective and efficient deployment (strategic), topology discovery (tactical), and data routing (operational) decisions in wireless sensor networks. These decisions will be considered in an integrated fashion and special emphasis will be given on three desirable attributes regarding sensor networks simultaneously. These attributes are energy efficiency, fault tolerance, and exploitation of communication versus computation trade-offs. Integer and nonlinear mathematical models that aim to capture these characteristics simultaneously and minimize the energy consumption and/or maximize effective sensor network lifespan will be developed. These models will provide sufficient flexibility to be used for making the above strategic-tactical-operational decisions both simultaneously and/or individually. On the methodological side, efficient solution algorithms that provide high quality solutions in reasonable time frames will be developed. These algorithms will include approaches that utilize the specificities of sensor network structures and operations in an effective way.If successful, the results of this grant will introduce new avenues of research in the theory of wireless sensor networks and provide novel analytical models and solution methodologies for important practical problems in this developing area. The results will provide desirable design and operation characteristics for sensor networks so that the benefits from these rather unusually constrained networks are maximized. In addition, a network-planning framework that underlines the interrelationships among different decision levels under the umbrella of unique sensor network attributes will be developed. This framework will help us understand the dynamics involved in making decisions where time frames for different level decisions (strategic-tactical-operational) are not as different as in the traditional contexts. The proposed work will also contribute to the computational tools and methodologies available for integer and nonlinear optimization problems.
该补助金为无线传感器网络中有效和高效的部署(战略),拓扑发现(战术)和数据路由(操作)决策的调查提供资金。这些决策将以综合的方式进行考虑,并同时特别强调传感器网络的三个理想属性。这些属性是能量效率、容错性以及通信与计算权衡的利用。将开发旨在同时捕获这些特性并最小化能耗和/或最大化有效传感器网络寿命的非线性和非线性数学模型。这些模型将提供足够的灵活性,用于同时和/或单独做出上述战略-战术-作战决策。在方法方面,将制定有效的解决方案算法,在合理的时间框架内提供高质量的解决方案。这些算法将包括利用传感器网络的结构和操作的特殊性,在一个有效的方式,如果成功的方法,这批的结果将在无线传感器网络的理论研究引入新的途径,并提供新的分析模型和解决方法的重要实际问题,在这个发展中的领域。研究结果将为传感器网络提供理想的设计和运行特性,使这些不寻常的约束网络的好处最大化。此外,一个网络规划框架,强调不同的决策水平之间的相互关系下的独特的传感器网络属性的保护伞将被开发。这一框架将帮助我们理解决策过程中的动态变化,其中不同层次决策(战略-战术-作战)的时间框架并不像传统环境中那样不同。拟议的工作也将有助于整数和非线性优化问题的计算工具和方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Halit Uster其他文献

Halit Uster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Halit Uster', 18)}}的其他基金

Infrastructure Systems Planning of Integrated Preparedness Logistics Networks for Large-Scale Foreseen Disasters
大规模可预见灾害综合备灾物流网络基础设施系统规划
  • 批准号:
    2114102
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop: Grantees and Future Research Directions in Service, Manufacturing, and Operations Research (NSF-SMOR) Southern Methodist University, Dallas, TX; October 9-11, 2016
研讨会:服务、制造和运营研究 (NSF-SMOR) 的受资助者和未来研究方向 (NSF-SMOR) 南卫理公会大学,达拉斯,德克萨斯州;
  • 批准号:
    1650203
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Data-Driven Methodologies to Addressing the Driver Turnover and Shortage Problems in Truckload Transportation
合作研究:综合数据驱动方法解决卡车运输中的司机流动和短缺问题
  • 批准号:
    1538115
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Student Travel Support for the 2008 INFORMS Southwest Regional Conference; College Station, Texas; April 18-19, 2008
2008 年 INFORMS 西南地区会议的学生旅行支持;
  • 批准号:
    0823505
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Analytical Approaches for the Design and Operation of Closed-Loop Supply Chains
合作研究:闭环供应链设计和运营的分析方法
  • 批准号:
    0522980
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
  • 批准号:
    2339978
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
  • 批准号:
    2342527
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
  • 批准号:
    2412147
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
  • 批准号:
    2329739
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
  • 批准号:
    2239787
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
  • 批准号:
    10081810
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
  • 批准号:
    2307573
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
  • 批准号:
    2236789
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了