Collaborative Research: Studies on Average Complexity

合作研究:平均复杂度研究

基本信息

  • 批准号:
    0429906
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2007-10-31
  • 项目状态:
    已结题

项目摘要

AbtractThis project studies the average complexity of computational problems in three directions.The first direction concerns with the notion of average NP-completeness, which was firstintroduced by Levin as a tool to prove the hardness of a problem in average-case analysis.Levin's original notion of reductions for average NP-completeness, however, seems too rigidto be applied to a wide class of problems that are believed to be hard-on-average. In thisproposal, a less restrictive notion of reductions is introduced, and is proposed as a new tool toprove new average NP-hard problems, including distributional function inverting problems.The second direction of this project investigates the relations between instance com-plexity and average time-complexity. Intuitively, the average complexity of a distributionalproblem is low if and only if the instance complexity of a random instance is low. Thus,instance complexity is a useful concept in the study of average complexity. This project willapply the formal notion of instance complexity, introduced by Ko et al. and closely related toKolmogorov complexity, to study average complexity. It will examine the size and distribu-tion of hard instances of average polynomial-time solvable problems, average NP-completeproblems, and pseudorandom generators.The third area of this investigation concerns with the average complexity of numericalcomputation. Because of the continuous nature of numerical computation, the notion ofaverage complexity is much different from that of discrete computation. The PIs proposeto extend the Turing machine-based (worst-case) complexity theory of real functions, intro-duced by Ko and Friedman, to develop a unified average complexity theory for numericalcomputation. It will focus on the relations between average complexity and randomization,and the average-case analysis of functions defined on two-dimensional domains, based on theLebesgue measure and the Hausdorff dimension/measure.Intellectual Merit. Average complexity is an important issue in analysis of algorithms.Average completeness, instance complexity, and average complexity of real functions arefundamental concepts in computational complexity theory, as well as numerical analysis.Connections between these concepts are critical to our understanding of average complexityof hard problems, and have potential to generate major breakthrough.The PIs are experts in these areas. They have played key roles in the introduction of thefundamental concepts and the development of the average complexity theory and complexitytheory of real functions.Broader Impact. Advances in average complexity are expected to have a substantialeffect on many areas of computer science and mathematics, including analysis of algorithms,numerical analysis, fractals and chaos theory, and pseudorandomness; and have significantapplications in more practical areas of cryptography and computer security.The PIs will integrate this research into graduate teaching. Results from this study willbe presented broadly in professional conferences and workshops, and in the form of surveypapers and lecture notes. Graduate and undergraduate students will participate in variousactivities of this project.
摘要该项目从三个方向研究计算问题的平均复杂性。第一个方向涉及平均NP完全性的概念,该概念最早由Levin引入,作为在平均情况分析中证明问题难度的工具。然而,Levin最初的平均NP完全性约简概念似乎过于僵化,无法应用于广泛的一类被认为是平均困难的问题。本文引入了一个限制性较弱的约简概念,并将其作为证明新的平均NP难问题(包括分布函数求逆问题)的一个新工具。直觉上,当且仅当随机实例的实例复杂度低时,分布式问题的平均复杂度低。因此,实例复杂度是研究平均复杂度的一个有用的概念。这个项目将应用Ko等人提出的实例复杂度的正式概念,并与Kolmogorov复杂度密切相关,来研究平均复杂度。它将研究平均多项式时间可解问题、平均NP完全问题和伪随机生成器的硬实例的大小和分布。由于数值计算的连续性,计算复杂性的概念与离散计算的概念有很大的不同。PI建议扩展Ko和Friedman提出的基于图灵机的真实的函数(最坏情况)复杂性理论,以发展一个统一的数值计算平均复杂性理论。它将集中在平均复杂性和随机化之间的关系,以及基于theLebesgue测度和Hausdorff维数/测度的二维域上定义的函数的平均情况分析。平均复杂性是算法分析中的一个重要问题。平均完备性、实例复杂性和真实的函数的平均复杂性是计算复杂性理论和数值分析中的基本概念。这些概念之间的联系对于我们理解困难问题的平均复杂性至关重要,并且有可能产生重大突破。PI是这些领域的专家。他们在引入基本概念和发展平均复杂性理论和真实的函数的复杂性理论方面发挥了关键作用。平均复杂度的进步预计将对计算机科学和数学的许多领域产生实质性的影响,包括算法分析、数值分析、分形和混沌理论以及伪随机性;并在密码学和计算机安全等更实际的领域有重要的应用。这项研究的结果将在专业会议和研讨会上广泛展示,并以调查论文和课堂讲稿的形式呈现。研究生和本科生将参加本项目的各种活动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Wang其他文献

A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells
适用于中温固体氧化物燃料电池的混合氧化物-离子和电子导电阴极的有限长度圆柱体模型
  • DOI:
    10.1149/2.1011606jes
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinfang Jin;Jie Wang;Lon;R. White;Kevin Huang
  • 通讯作者:
    Kevin Huang
Performance of sludge settling property under nitrite existing conditions
亚硝酸盐存在条件下污泥沉降性能表现
  • DOI:
    10.1080/09593330.2015.1116496
  • 发表时间:
    2016-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xiong Yang;Yongzhen Peng;Jichen Song;Shuying Wa;Jie Wang;Qing Yang
  • 通讯作者:
    Qing Yang
Impact of self‐service technology in designing a service delivery system
自助服务技术对服务交付系统设计的影响
  • DOI:
    10.1111/poms.13797
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jie Wang;Lijun Ma;Weili Xue;Yong‐Hong Kuo
  • 通讯作者:
    Yong‐Hong Kuo
Water spray flow rate effect on smoke temperature distribution under the ceiling in tunnel fires with longitudinal ventilation
纵向通风隧道火灾喷水流量对顶棚下烟温分布的影响
  • DOI:
    10.1016/j.tust.2018.05.013
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Jie Wang;Zhicheng Xie;Kaihua Lu;Xuepeng Jiang;Hongjie Zhang
  • 通讯作者:
    Hongjie Zhang
Adaptive parameters optimization model with 3D information extraction for infrared small target detection based on particle swarm optimization algorithm
基于粒子群优化算法的红外小目标检测三维信息提取自适应参数优化模型
  • DOI:
    10.1016/j.infrared.2021.103838
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Xiangyang Ren;Caitong Yue;Tianlei Ma;Jie Wang;Yan Wu;Zhengkui Weng
  • 通讯作者:
    Zhengkui Weng

Jie Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Wang', 18)}}的其他基金

Collaborative Research: Spectrum Efficient Waveform Design with Application to Wireless Networks
合作研究:频谱效率波形设计及其在无线网络中的应用
  • 批准号:
    1247875
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Undersea Sensor Networks for Intrusion Detection: Foundations and Practice
NeTS:小型:协作研究:用于入侵检测的海底传感器网络:基础与实践
  • 批准号:
    1018303
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Travel Support for Students to Attend the WASA 2009 Conference
为学生参加 WASA 2009 会议提供差旅支持
  • 批准号:
    0908636
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
TF-SING: Collaborative Research: Reliable Spatial-Temporal Coverage with Minimum Cost in Wireless Sensor Network Deployments
TF-SING:协作研究:以最低成本实现无线传感器网络部署的可靠时空覆盖
  • 批准号:
    0830314
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Average Complexity
平均复杂度
  • 批准号:
    0296037
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Average Complexity
平均复杂度
  • 批准号:
    9820611
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RUI: Structural Aspects of Average-Case NP-Completeness
RUI:平均情况 NP 完备性的结构方面
  • 批准号:
    9424164
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
One-Way Functions and Polynomial Isomorphisms
单向函数和多项式同构
  • 批准号:
    9396331
  • 财政年份:
    1993
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
One-Way Functions and Polynomial Isomorphisms
单向函数和多项式同构
  • 批准号:
    9108899
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR Instrumentation: A continuous metabolite sensor for lab and field studies
合作研究:IIBR Instrumentation:用于实验室和现场研究的连续代谢物传感器
  • 批准号:
    2324717
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229101
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID--Characterizing the Water Isotope Signature of an El Nino Event for Paleoclimate and Hydroclimate Studies
合作研究:RAPID——为古气候和水文气候研究描述厄尔尼诺事件的水同位素特征
  • 批准号:
    2333172
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
  • 批准号:
    2322857
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
  • 批准号:
    2229100
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Chemistry-Informed Ice Nucleation and Growth--Integrated Laboratory and Modeling Studies
合作研究:基于化学的冰成核和生长——综合实验室和模型研究
  • 批准号:
    2322856
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Design and mechanistic studies on microenvironment-sensitive polymeric nanoparticles for simultaneous contents release and ultrasound imaging
合作研究:微环境敏感聚合物纳米粒子的设计和机理研究,用于同时释放内容物和超声成像
  • 批准号:
    2322963
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental studies of porous polymers for selective gold retrieval
合作研究:用于选择性金回收的多孔聚合物的基础研究
  • 批准号:
    2315087
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory and Modeling Studies to Resolve a Grand Challenge for Upper Atmospheric Science
合作研究:实验室和模型研究解决高层大气科学的巨大挑战
  • 批准号:
    2312191
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了