Secure Personalization: Building Trustworthy Recommender Systems
安全个性化:构建值得信赖的推荐系统
基本信息
- 批准号:0430303
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-09-15 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to explore the vulnerabilities of recommendation and personalization systems in the face of malicious attacks, explore techniques for enhancing their robustness, and examine methods by which attacks can be recognized and possibly defeated. Most research in computer security focuses on protecting assets inside an organization's security perimeter from unauthorized access and modification. This project examines the problem of security for systems that are designed to be accessed and modified by the general public. How do we protect such a system from the legal but biased inputs of an attacker trying to subvert its functionality? The project will advance our understanding of the trustworthiness of recommender systems, now a crucial component in many areas from e-commerce and e-learning to content management systems. We will explore the spectrum of possible attacks against recommendation systems, and develop formal models characterizing these attacks and their impacts. We will investigate different metrics for assessing the robustness of recommendation algorithms including accuracy, stability and expected payoff to the attacker. In tandem with this theoretical work, we will conduct empirical investigations using data from a variety of domains. We will test a range of recommendation algorithms including user-based, item-based and model-based collaborative recommenders, and also explore hybrid recommendation by combining collaborative recommendation techniques with content-based and knowledge-based ones. Finally, informed by these results, we will consider how recommender systems can be secured, through improved algorithms but also by detecting attacks and responding appropriately. Our research will have significant implications for a variety of adaptive information systems that rely on users' input for learning user or group profiles. Many such systems have open components through which a malicious user or an automated agent can affect the overall system behavior.
本研究的目的是探讨的建议和个性化系统在面对恶意攻击的脆弱性,探索技术,提高其鲁棒性,并检查攻击可以识别和可能击败的方法。大多数计算机安全研究都集中在保护组织安全边界内的资产免受未经授权的访问和修改。这个项目研究的问题是安全的系统,旨在访问和修改的一般公众。 我们如何保护这样一个系统免受试图破坏其功能的攻击者的法律的但有偏见的输入?该项目将促进我们对推荐系统可信度的理解,推荐系统现在是从电子商务和电子学习到内容管理系统的许多领域的关键组成部分。我们将探索针对推荐系统的可能攻击的范围,并开发描述这些攻击及其影响的正式模型。 我们将研究评估推荐算法鲁棒性的不同指标,包括准确性,稳定性和对攻击者的预期回报。 与此同时,我们将使用来自各个领域的数据进行实证调查。 我们将测试一系列的推荐算法,包括基于用户的,基于项目和基于模型的协同推荐,并探索混合推荐技术相结合的协同推荐技术与基于内容和基于知识的。最后,根据这些结果,我们将考虑如何通过改进算法以及检测攻击和适当响应来保护推荐系统。我们的研究将对依赖于用户输入来学习用户或组配置文件的各种自适应信息系统产生重大影响。许多这样的系统都有开放的组件,恶意用户或自动代理可以通过这些组件影响整个系统的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Burke其他文献
Transparency by Design
设计透明度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J.F.L. Kay;T. Kuflik;Michael Rovatsos;Joanna J. Bryson;Robin Burke;Aylin Caliskan;Cristina Conati;Joshua A. Kroll - 通讯作者:
Joshua A. Kroll
Exploring Social Choice Mechanisms for Recommendation Fairness in SCRUF
探索 SCRUF 中推荐公平性的社会选择机制
- DOI:
10.48550/arxiv.2309.08621 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Amanda A. Aird;Cassidy All;Paresha Farastu;Elena Stefancova;Joshua Sun;Nicholas Mattei;Robin Burke - 通讯作者:
Robin Burke
Preface to the special issue on fair, accountable, and transparent recommender systems
- DOI:
10.1007/s11257-021-09297-5 - 发表时间:
2021-07-01 - 期刊:
- 影响因子:3.500
- 作者:
Robin Burke;Michael D. Ekstrand;Nava Tintarev;Julita Vassileva - 通讯作者:
Julita Vassileva
Robin Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Burke', 18)}}的其他基金
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232555 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Fair Recommendation Through Social Choice
III:媒介:协作研究:通过社会选择进行公平推荐
- 批准号:
2107577 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: Realizing Fairness in Recommender Systems: Intersectionality, Tools, Explanation
III:小:在推荐系统中实现公平性:交叉性、工具、解释
- 批准号:
1911025 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: RUI: Multi-dimensional Recommendation in Complex Heterogeneous Networks
三:小:RUI:复杂异构网络中的多维推荐
- 批准号:
1423368 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
SBIR Phase II: Roentgen: An Intelligent Radiotherapy Planner
SBIR 第二阶段:伦琴:智能放射治疗规划器
- 批准号:
9531395 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
- 批准号:
23K24962 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Enhancing Diversity and Personalization in Human-AI Collaborative Writing
职业:增强人机协作写作的多样性和个性化
- 批准号:
2340345 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRII: III: Towards Improving the Handling of Heterogeneity and Personalization in Federated Learning
CRII:III:改进联邦学习中异构性和个性化的处理
- 批准号:
2246067 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232694 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232692 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
- 批准号:
2232693 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A facial expression-based personalization engine (FPE) for monitoring and modulating real-time effective engagement in cognitive training in older adults at risk for AD/ADRD
基于面部表情的个性化引擎 (FPE),用于监控和调节有 AD/ADRD 风险的老年人实时有效地参与认知训练
- 批准号:
10766409 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Innovations in Personalizing Treatment for Eating Disorders Using Idiographic Methods and the Impact of Personalization on Psychological, Physical, and Sociodemographic Outcomes
使用具体方法对饮食失调进行个性化治疗的创新以及个性化对心理、身体和社会人口学结果的影响
- 批准号:
10685796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
- 批准号:
2306331 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Personalization of graphical models using multi-omics data for subtype discovery and prognosis
使用多组学数据个性化图形模型以进行亚型发现和预后
- 批准号:
10743786 - 财政年份:2023
- 资助金额:
-- - 项目类别: