SCH: Shallow and Deep Personalization for Hearing Aids

SCH:助听器的浅度和深度个性化

基本信息

  • 批准号:
    2306331
  • 负责人:
  • 金额:
    $ 119.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Approximately 44.1 million adults in the US suffered from hearing loss, according to recent statistics. Untreated hearing impairment affects communication and can contribute to social isolation, depression, dementia, and reduced quality of life. The primary intervention for sensorineural hearing loss and related psychosocial consequences is hearing aid (HA) amplification. Unfortunately, only 15–30% of those who could benefit from HAs use them. A prerequisite for the successful adoption of HAs is effective signal processing algorithms coupled with personalization methods to configure their many parameters to improve speech understanding, sound quality, and users' subjective preferences. Therefore, this proposal focuses on developing new signal processing algorithms and configuration methods that empower people with hearing loss to meet their individualized hearing needs.This project aims to develop two approaches for personalizing HAs with different trade-offs in the degree of personalization, the amount of user effort required to find a satisfactory configuration, and their effectiveness in handling hearing losses of varying severity. It will develop shallow personalization techniques for configuring the parameters of existing HA signal-processing pipelines. These approaches provide more personalization options than state-of-the-art over-the-counter HAs by using different sub-band processing gains, compression parameters, and noise-reduction settings depending on the auditory context. These techniques are most suitable for patients with mild-to-moderate sensorineural hearing loss. We will also develop deep personalization techniques for training and personalizing HAs that use deep neural networks to amplify sounds. A unique aspect of this approach is using electroencephalogram signals combined with user feedback to drive the personalization process. These algorithms will benefit patients with more severe hearing loss or those in challenging auditory environments. The intellectual merit of this proposal is the new advancements in machine learning that are necessary to enable patients to configure and effectively use their HAs. The proposed research is anticipated to empower patients to become more involved in hearing care, improve HA satisfaction, and enrich their social interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据最近的统计数据,美国约有4410万成年人遭受听力损失。未经治疗的听力障碍会影响沟通,并可能有助于社会隔离,抑郁,痴呆和生活质量降低。感官听力损失和相关心理社会后果的主要干预措施是助听器(HA)扩增。不幸的是,只有15-30%可以从中受益的人使用它们。成功采用IS的先决条件是有效的信号处理算法以及个性化方法,以配置其许多参数,以提高语音理解,声音质量和用户的主题偏好。因此,该建议的重点是开发新的信号处理算法和配置方法,以赋予听力损失的人以满足其个性化的听力需求。该项目旨在开发两种个性化方法,具有不同的个性化程度,用户的努力,需要进行令人满意的配置及其在处理听力损失方面所需的用户努力。它将开发出浅的个性化技术,用于配置现有HA信号处理管道的参数。通过使用不同的子带处理收益,压缩参数和降噪设置,这些方法比最新的非处方药提供了更多的个性化选项,具体取决于听觉上下文。这些技术最适合轻度至中度感官听力损失的患者。我们还将开发深厚的个性化技术来进行培训和个性化,从而使用深层神经网络来放大声音。这种方法的一个独特方面是使用脑电图信号与用户反馈相结合来推动个性化过程。这些算法将使听力损失更严重或挑战听觉环境的患者受益。该提案的智力优点是机器学习的新进步,这是使患者能够配置和有效使用自己的拥有所必需的。拟议的研究预计将使患者有能力更多地参与听力护理,提高HA满足感并丰富他们的社交互动。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Octav Chipara其他文献

Octav Chipara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Octav Chipara', 18)}}的其他基金

SCH: INT: Collaborative Research: A Framework for Optimizing Hearing Aids In Situ Based on Patient Feedback, Auditory Context, and Audiologist Input
SCH:INT:协作研究:基于患者反馈、听觉环境和听力学家输入的现场优化助听器的框架
  • 批准号:
    1838830
  • 财政年份:
    2019
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Standard Grant
CAREER: Software Adaptation and Synthesis Techniques for Internet of Things Systems
职业:物联网系统的软件适配和综合技术
  • 批准号:
    1750155
  • 财政年份:
    2018
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Protocols and Analysis for Predictable Wireless Sensor Networks
NetS:小型:协作研究:可预测无线传感器网络的协议和分析
  • 批准号:
    1144664
  • 财政年份:
    2011
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Standard Grant

相似国自然基金

华北地区浅对流向深对流云转换过程的多源观测和机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
斑岩成矿系统浅部岩浆储库的关键控矿机制—来自西藏甲玛3000米科学深钻的矿物学证据
  • 批准号:
    42272093
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
华北地区浅对流向深对流云转换过程的多源观测和机理研究
  • 批准号:
    42275091
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
深/浅根型覆盖作物混种提升香蕉园土壤有机碳的生物学机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
PbX (X=Te, Se)基化合物的深、浅能级杂质调控与热电性能
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Continuing Grant
特徴的後続波形のモデリングから解明する内陸地殻浅部・深部低周波地震の発生機構
通过特征后续波形建模阐明浅层和深部内陆地壳低频地震的发生机制
  • 批准号:
    24K07164
  • 财政年份:
    2024
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333101
  • 财政年份:
    2024
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Standard Grant
Mechanisms and rate of anthropogenic CO2 uptake in Canadian coastal waters and the response of shallow and deep-ocean carbonate sediments to ocean acidification.
加拿大沿海水域人为二氧化碳吸收的机制和速率以及浅海和深海碳酸盐沉积物对海洋酸化的响应。
  • 批准号:
    RGPIN-2018-04421
  • 财政年份:
    2022
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
  • 批准号:
    2143904
  • 财政年份:
    2022
  • 资助金额:
    $ 119.91万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了