SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
基本信息
- 批准号:2306331
- 负责人:
- 金额:$ 119.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Approximately 44.1 million adults in the US suffered from hearing loss, according to recent statistics. Untreated hearing impairment affects communication and can contribute to social isolation, depression, dementia, and reduced quality of life. The primary intervention for sensorineural hearing loss and related psychosocial consequences is hearing aid (HA) amplification. Unfortunately, only 15–30% of those who could benefit from HAs use them. A prerequisite for the successful adoption of HAs is effective signal processing algorithms coupled with personalization methods to configure their many parameters to improve speech understanding, sound quality, and users' subjective preferences. Therefore, this proposal focuses on developing new signal processing algorithms and configuration methods that empower people with hearing loss to meet their individualized hearing needs.This project aims to develop two approaches for personalizing HAs with different trade-offs in the degree of personalization, the amount of user effort required to find a satisfactory configuration, and their effectiveness in handling hearing losses of varying severity. It will develop shallow personalization techniques for configuring the parameters of existing HA signal-processing pipelines. These approaches provide more personalization options than state-of-the-art over-the-counter HAs by using different sub-band processing gains, compression parameters, and noise-reduction settings depending on the auditory context. These techniques are most suitable for patients with mild-to-moderate sensorineural hearing loss. We will also develop deep personalization techniques for training and personalizing HAs that use deep neural networks to amplify sounds. A unique aspect of this approach is using electroencephalogram signals combined with user feedback to drive the personalization process. These algorithms will benefit patients with more severe hearing loss or those in challenging auditory environments. The intellectual merit of this proposal is the new advancements in machine learning that are necessary to enable patients to configure and effectively use their HAs. The proposed research is anticipated to empower patients to become more involved in hearing care, improve HA satisfaction, and enrich their social interactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
根据最近的统计数据,美国约有4410万成年人患有听力损失。未经治疗的听力障碍会影响沟通,并可能导致社会孤立,抑郁,痴呆和生活质量下降。感音神经性听力损失和相关心理社会后果的主要干预措施是助听器(HA)放大。不幸的是,只有15-30%的人可以受益于HA使用它们。成功采用HAs的先决条件是有效的信号处理算法以及个性化方法,以配置其许多参数,从而改善语音理解、声音质量和用户的主观偏好。因此,本项目的重点是开发新的信号处理算法和配置方法,使听力损失患者能够满足其个性化的听力需求。本项目旨在开发两种方法,用于个性化HA,在个性化程度、用户找到满意配置所需的努力量以及处理不同严重程度听力损失的有效性方面进行不同的权衡。它将开发浅层个性化技术,用于配置现有HA信号处理管道的参数。这些方法通过根据听觉上下文使用不同的子带处理增益、压缩参数和降噪设置,提供了比现有技术的非处方HA更多的个性化选项。这些技术最适合轻度至中度感音神经性听力损失患者。我们还将开发深度个性化技术,用于训练和个性化使用深度神经网络放大声音的HA。这种方法的一个独特之处是使用脑电图信号与用户反馈相结合来驱动个性化过程。这些算法将使患有更严重听力损失或处于具有挑战性的听觉环境中的患者受益。该提案的智力价值是机器学习的新进展,这是使患者能够配置和有效使用其HA所必需的。该研究计划旨在帮助患者更多地参与听力保健,提高HA满意度,并丰富他们的社会交往。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Octav Chipara其他文献
Octav Chipara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Octav Chipara', 18)}}的其他基金
SCH: INT: Collaborative Research: A Framework for Optimizing Hearing Aids In Situ Based on Patient Feedback, Auditory Context, and Audiologist Input
SCH:INT:协作研究:基于患者反馈、听觉环境和听力学家输入的现场优化助听器的框架
- 批准号:
1838830 - 财政年份:2019
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
CAREER: Software Adaptation and Synthesis Techniques for Internet of Things Systems
职业:物联网系统的软件适配和综合技术
- 批准号:
1750155 - 财政年份:2018
- 资助金额:
$ 119.91万 - 项目类别:
Continuing Grant
NeTS: Small: Collaborative Research: Protocols and Analysis for Predictable Wireless Sensor Networks
NetS:小型:协作研究:可预测无线传感器网络的协议和分析
- 批准号:
1144664 - 财政年份:2011
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
相似国自然基金
鄂北大别山地区深部壳幔作用与浅部金铜多金属成矿响应研究
- 批准号:JCZRLH202501279
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
连柏复方喷雾促进SD大鼠浅Ⅱ度烧烫伤 创面愈合效果及作用机制研
究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
浅度故障下风电PMSG 互联系统运行动态分析与诊断
- 批准号:2024JJ7614
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
科尔沁沙地玉米浅埋滴灌与秸秆冬覆春还协同节水增效机制
- 批准号:
- 批准年份:2024
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于参量阵浅地层剖面仪的高精度多波束海
底探测技术研究
- 批准号:Q24D060029
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
浅埋近距离煤层“倒梯形覆岩-煤柱-间隔岩层”耦合结构强矿压机理研究
- 批准号:52304153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大功率参量阵式浅地层剖面仪的收发信号处理和多波束实现技术研究
- 批准号:62301489
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高剂量离子注入超浅结的泵浦增强二次谐波测量原理与方法研究
- 批准号:52375541
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
监测南北地震带北段浅地壳速度时变来解析应力变化和加载机制
- 批准号:42304055
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
重庆地区强降雨诱发碎裂节理化软岩浅埋隧道大变形失稳演化机理研究
- 批准号:CSTB2023NSCQ-MSX0082
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Continuing Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
Developing a remote sensing system for longshore sediment estimation at the research pier HORS
开发用于 HORS 研究码头沿岸沉积物估算的遥感系统
- 批准号:
22KF0419 - 财政年份:2023
- 资助金额:
$ 119.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows
浅部から深部まで一貫した火山性地震の検出によるマグマ供給プロセスの解明
通过检测从浅到深的一致火山地震来阐明岩浆供应过程
- 批准号:
22K14113 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms and rate of anthropogenic CO2 uptake in Canadian coastal waters and the response of shallow and deep-ocean carbonate sediments to ocean acidification.
加拿大沿海水域人为二氧化碳吸收的机制和速率以及浅海和深海碳酸盐沉积物对海洋酸化的响应。
- 批准号:
RGPIN-2018-04421 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Discovery Grants Program - Individual
Estimation of long-period earthquake ground motion using subsurface velocity models from waveform inversions of earthquake records in major basins in Japan
利用日本主要盆地地震记录波形反演的地下速度模型估算长周期地震地面运动
- 批准号:
22H00234 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
- 批准号:
2143904 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Continuing Grant
A multi-tracers approach to quantifying Shield brines mixing and migration from deep to shallow aquifer systems
量化盾构盐水混合和从深层含水层系统到浅层含水层系统迁移的多示踪剂方法
- 批准号:
RGPIN-2018-05195 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Discovery Grants Program - Individual
NSFGEO-NERC: VERTEBRATE FUNCTIONAL TRAITS AS INDICATORS OF ECOSYSTEM FUNCTION THROUGH DEEP AND SHALLOW TIME-Jason Head -NSF-NERC (NSF is the lead)
NSFGEO-NERC:脊椎动物功能特征作为深浅时间生态系统功能的指标-Jason Head -NSF-NERC(NSF 牵头)
- 批准号:
NE/W007576/1 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Research Grant
Seamless Diagnosis of Atmospheric and Oceanic Wave Energy Circulation for Tropical and Mid-Latitude Interactions
热带和中纬度相互作用的大气和海洋波浪能循环的无缝诊断
- 批准号:
22H00176 - 财政年份:2022
- 资助金额:
$ 119.91万 - 项目类别:
Grant-in-Aid for Scientific Research (A)