Collaborative Research: SaTC: CORE: Medium: Private Model Personalization
协作研究:SaTC:核心:媒介:私人模型个性化
基本信息
- 批准号:2232693
- 负责人:
- 金额:$ 29.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern machine learning's success has brought with it a serious challenge for privacy: it is now widely documented that the models currently in use encode individual inputs in surprising ways. Understanding how to detect such memorization, and training methods that avoid it, is a major topic of current research. However, prior investigations have focused mostly on the batch model of machine learning, in which training data are all drawn from a single underlying population.This project seeks to understand the privacy risks that arise when the training data from many populations are pooled in order to take advantage of structure that is shared across populations. For example, many individuals’ photos could be pooled to train better face recognition algorithms (even though each person is interested in a different set of faces). Such settings—called “model personalization”, “multitask learning” or “meta-learning”—provide a powerful framework for combining insights from far-flung, disparate data sources. However, their power raises fundamental questions about the extent to which the results of joint analysis violate the privacy of individual users' data. The project looks both at attacks on privacy—methods for extracting individual-level or dataset-level information from the resulting predictions or models—as well as mitigation strategies based on the now-standard, state-of-the-art framework, differential privacy. The project involves both theoretical analysis and real-world experimentation. It will inform the development of training algorithms for these complex settings and provide tools for use by companies and other research groups. This impact will be facilitated by the project team's existing collaborations with industry researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器学习的成功给隐私带来了严峻的挑战:现在广泛记录的是,目前使用的模型以令人惊讶的方式对个人输入进行编码。了解如何检测这种记忆,以及避免这种记忆的训练方法,是当前研究的一个主要课题。然而,之前的研究主要集中在机器学习的批处理模型上,其中训练数据都来自单一的底层人群。该项目旨在了解当来自许多人群的训练数据被汇集以利用跨人群共享的结构时所产生的隐私风险。例如,可以将许多个人的照片集中起来,以训练更好的人脸识别算法(即使每个人对不同的人脸集感兴趣)。这些设置被称为“模型个性化”、“多任务学习”或“元学习”,它们提供了一个强大的框架,可以将来自遥远、不同数据源的见解结合起来。然而,他们的权力提出了一个根本性的问题,即联合分析的结果在多大程度上侵犯了个人用户数据的隐私。该项目既着眼于对隐私的攻击从预测结果或模型中提取个人或个人级别信息的方法,也着眼于基于现在标准的最先进框架差异隐私的缓解策略。该项目涉及理论分析和现实世界的实验。它将为这些复杂设置的训练算法的开发提供信息,并为公司和其他研究团体提供工具。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiwei Steven Wu其他文献
Logarithmic Query Complexity for Approximate Nash Computation in Large Games
大型游戏中近似纳什计算的对数查询复杂度
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0.5
- 作者:
P. Goldberg;Francisco Javier Marmolejo;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Competing Bandits: The Perils of Exploration Under Competition
强盗竞争:竞争中探索的危险
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Guy Aridor;Y. Mansour;Aleksandrs Slivkins;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Inducing Approximately Optimal Flow Using Truthful Mediators
使用真实的中介者诱导近似最佳的流动
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ryan M. Rogers;Aaron Roth;Jonathan Ullman;Zhiwei Steven Wu - 通讯作者:
Zhiwei Steven Wu
Provable Multi-Party Reinforcement Learning with Diverse Human Feedback
可证明的多方强化学习与不同的人类反馈
- DOI:
10.48550/arxiv.2403.05006 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Huiying Zhong;Zhun Deng;Weijie J. Su;Zhiwei Steven Wu;Linjun Zhang - 通讯作者:
Linjun Zhang
Structured Linear Contextual Bandits: A Sharp and Geometric Smoothed Analysis
结构化线性上下文强盗:锐利且几何平滑的分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
V. Sivakumar;Zhiwei Steven Wu;A. Banerjee - 通讯作者:
A. Banerjee
Zhiwei Steven Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhiwei Steven Wu', 18)}}的其他基金
CAREER: New Frontiers of Private Learning and Synthetic Data
职业:私人学习和合成数据的新领域
- 批准号:
2339775 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Foundations for the Next Generation of Private Learning Systems
协作研究:SaTC:核心:小型:下一代私人学习系统的基础
- 批准号:
2120611 - 财政年份:2021
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
- 批准号:
2125692 - 财政年份:2020
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
FAI: Advancing Fairness in AI with Human-Algorithm Collaborations
FAI:通过人类算法合作促进人工智能的公平性
- 批准号:
1939606 - 财政年份:2020
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 29.97万 - 项目类别:
Continuing Grant