QnTM: Quantum Information Processing in Single Crystal Solids with NMR

QnTM:利用 NMR 在单晶固体中进行量子信息处理

基本信息

  • 批准号:
    0432186
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-08-15 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

In the last decade, quantum computing and quantum information processing (QIP) have attracted significant interest due to the promise of more efficient algorithms for solving classically hard problems such as data searching and factorization. The latter is particularly relevant from the standpoint of national security as many data encryption schemes remain secure based on the difficulty of factoring large integer keys. Currently, we do not know how to build a quantum computer that is large enough that the promises of increased computational power can be realized. Of the many physical systems under development for potential use as quantum processors, nuclear magnetic resonance (NMR) is the furthest advanced. NMR exploits atomic nuclei that exist in spin states of "up" and "down". These spin states can be manipulated using pulsed magnetic fields to produce quantum logic gates and implement quantum algorithms. To date, several types of manipulations and algorithms have been demonstrated for spin bearing molecules in solution using liquid-state NMR. There are significant benefits, however, to performing QIP in static single crystal solids. In particular, the speed of a quantum algorithm can be increased by 2-3 orders of magnitude by taking advantage of interactions between nuclear spins that are inherently larger in solids. As well, single crystal solids are compatible with low temperatures, which can substantially increase sensitivity and address fundamental questions of state initialization and scalability. Indeed, because of increased speed, potentially larger processors, and better sensitivity, solid-state NMR has been tapped for next-generation QIP. Recently our group was the first to report experiments on a three-qubit NMR quantum information processor, using a static single-crystal of isotopically labeled glycine (H215N13CH213COOH) (Journal of Chemical Physics 119(3), 1643-1649 (2003)). Under this research program, we propose to develop new materials and methods for next-generation single crystal solid-state NMR QIP, seeking to extend the size and power of quantum processors and mapping out important physical parameters that define this technology. In the process, a number of graduate, postdoctoral, and undergraduate students will be trained in state-of-the techniques of both chemistry and physics, enabling a strong technological base to support the future needs of both industrial and government research laboratories.
在过去的十年里,量子计算和量子信息处理(QIP)吸引了人们的极大兴趣,因为它们有望提供更有效的算法来解决经典的困难问题,如数据搜索和因式分解。从国家安全的角度来看,后者特别重要,因为许多数据加密方案基于分解大整数密钥的困难而保持安全。目前,我们不知道如何建造一台足够大的量子计算机,以实现增加计算能力的承诺。在许多正在开发中的潜在用于量子处理器的物理系统中,核磁共振是最先进的。核磁共振利用了存在于“向上”和“向下”自旋状态的原子核。这些自旋态可以使用脉冲磁场来操纵,以产生量子逻辑门并实现量子算法。到目前为止,已经证明了几种类型的操纵和算法的自旋轴承分子在溶液中使用液态核磁共振。然而,在静态单晶固体中执行QIP有显著的好处。特别是,通过利用固体中固有的更大的核自旋之间的相互作用,量子算法的速度可以提高2-3个数量级。此外,单晶固体可以与低温兼容,这可以显著提高灵敏度,并解决状态初始化和可扩展性的基本问题。事实上,由于速度的提高,潜在的更大的处理器,以及更好的灵敏度,固态核磁共振已经被用于下一代QIP。最近,我们小组首次报道了使用同位素标记的甘氨酸(H215N13CH213COOH)的静态单晶进行的三量子比特核磁共振量子信息处理器的实验(《化学物理杂志》119(3),1643-1649(2003))。在这一研究计划下,我们建议开发新的材料和方法用于下一代单晶固体核磁共振量子激元,寻求扩展量子处理器的尺寸和能力,并绘制出定义这一技术的重要物理参数。在此过程中,一批研究生、博士后和本科生将接受最先进的化学和物理技术培训,使强大的技术基础能够支持工业和政府研究实验室未来的需求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonard Mueller其他文献

Leonard Mueller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonard Mueller', 18)}}的其他基金

NMR Crystallography: Linking Chemical Structure and Mechanism in Tryptophan Synthase
NMR 晶体学:连接色氨酸合酶的化学结构和机制
  • 批准号:
    1710671
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Upgrade to a Console with Solid State Capabilities for a 14.1 T Magnet
MRI:获得具有 14.1 T 磁铁固态功能的升级控制台
  • 批准号:
    1626673
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Structure and Dynamics with Solid-State NMR
固态核磁共振的结构和动力学
  • 批准号:
    0848607
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Structure and Dynamics with Solid-State Nuclear Magnetic Resonance (NMR)
职业:利用固态核磁共振 (NMR) 进行结构和动力学研究
  • 批准号:
    0349345
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

QUIQ: Quantum information processed at attosecond timescale in double quantum-dot qubits
QUIQ:在双量子点量子位中以阿秒时间尺度处理的量子信息
  • 批准号:
    EP/Z000807/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Conference: Quantum Horizons: Empowering Faculty for the Future of Quantum Information
会议:量子视野:为量子信息的未来赋予教师权力
  • 批准号:
    2345607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Introducing Quantum Logic Spectroscopy to Greater Southern Nevada as a Vital Quantum Control and Information Process Method
RII Track-4:NSF:将量子逻辑光谱作为重要的量子控制和信息处理方法引入内华达州南部
  • 批准号:
    2327247
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
  • 批准号:
    EP/Z000505/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Protection of quantum information in small clusters of qubits
保护小量子位簇中的量子信息
  • 批准号:
    EP/Z000572/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
  • 批准号:
    24K06756
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
  • 批准号:
    2337931
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Optical control of nuclear spin-spin couplings and its application to quantum information processing
核自旋-自旋耦合的光控制及其在量子信息处理中的应用
  • 批准号:
    23H01131
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了