Ensemble Methods for Data Analysis in the Behavioral, Social and Economic Sciences

行为、社会和经济科学中数据分析的集成方法

基本信息

  • 批准号:
    0437169
  • 负责人:
  • 金额:
    $ 48.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-10-01 至 2006-11-30
  • 项目状态:
    已结题

项目摘要

PROPOSAL ID: 0437169PRINCIPAL INVESTIGATOR: Richard Berk and Robert D MareINSTITUTIONS: UCLATITLE: Ensemble Methods for Data Analysis in the Behavioral, Social and Economic SciencesABSTRACTThe analysis of observational data in the behavioral, social, and economic sciences is commonly undertaken with statistical modeling. Over the past decade, another approach to data analysis has been evolving in applied mathematics, computer science, and statistics that some have called ``algorithmic.'' There is usually no effort to construct a model of how the data were generated. The goal is to link a set of inputs to one or more outputs so that some clear objective function is optimized by a computer algorithm. This proposal focuses on ``ensemble methods,'' which are an especially promising special case of algorithmic methods. The goal this is to help foster more effective interactions between the developers of ensemble methods and empirical researchers in the behavioral, social, and economic sciences. The approach is to apply, using real data sets, ensemble methods to important social science data analysis problems. These include 1) evaluation procedures for complex computer simulations, 2) diagnostic procedures for conventional statistical models, 3) adjustments for confounding in observational studies, and 4) classification and prediction exercises when the response variable is highly skewed. In each case, the performance of the ensemble methods will be compared to the performance of conventional modeling using ten assessment criteria detailed in the proposal.The proposed application of ensemble methods to real data sets should have several broad benefits for the behavioral, social and economic sciences, as well as for the mathematical and statistical sciences. Powerful and rapidly developing data analysis tools, under the broad rubric of "data mining," will be applied to difficult data analysis problems. These exercises will illustrate strengths and weakness of ensemble methods for certain kinds of demanding empirical research. This experience will help inform the behavioral, social, and economic sciences about when ensemble methods can be useful and what their limitations can be. Equally important, the applications will provide a ``test bed'' for a variety of ensemble methods from which will likely emerge potential refinements in existing ensemble procedures and new technical questions insufficiently addressed in the current literature. Thus, the mathematical and statistical sciences can benefit as well. Finally, each of the data sets to be used is potentially rich in substantive implications. Although the emphasis in this proposal is methodological, it is entirely possible that the data analyses to be undertaken will also be instructive from subject-matter perspective.
提案ID:0437169 PRINCIPAL调查员:Richard Berk和Robert D MareInstitIONS:UCLATITLE:行为、社会和经济科学中的数据分析方法摘要行为、社会和经济科学中的观测数据分析通常使用统计建模。在过去的十年里,另一种数据分析方法在应用数学、计算机科学和统计学中不断发展,一些人称之为“算法”。通常不需要努力构建数据是如何生成的模型。目标是将一组输入连接到一个或多个输出,以便通过计算机算法优化某些明确的目标函数。这项建议侧重于“集合方法”,这是算法方法的一个特别有前途的特例。这样做的目的是帮助促进集合方法的开发者和行为、社会和经济科学中的实证研究人员之间更有效的互动。这种方法是使用真实的数据集,将集成方法应用于重要的社会科学数据分析问题。这些包括1)复杂计算机模拟的评估程序,2)传统统计模型的诊断程序,3)观测研究中的混杂调整,以及4)当响应变量高度倾斜时的分类和预测练习。在每种情况下,集成方法的性能将与传统建模的性能进行比较,使用建议中详细说明的十个评估标准。建议将集成方法应用于真实数据集应该会对行为科学、社会科学和经济学以及数学和统计科学产生几个广泛的好处。在“数据挖掘”的大标题下,强大而快速发展的数据分析工具将被应用于困难的数据分析问题。这些练习将说明集合方法在某些严苛的实证研究中的长处和短处。这一经验将帮助行为、社会和经济科学了解合奏方法何时有用,以及它们的局限性。同样重要的是,这些应用将为各种集合方法提供“试验台”,从这些方法中可能会出现现有集合程序中的潜在改进和当前文献中没有充分讨论的新的技术问题。因此,数学和统计科学也能从中受益。最后,将要使用的每个数据集都可能具有丰富的实质性影响。虽然这项建议的重点是方法论,但从主题的角度来看,完全有可能进行的数据分析也将具有指导意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Berk其他文献

Forecasting for Police Officer Safety: A Demonstration of Concept
警务人员安全预测:概念演示
The powerful seductions alchemy
Processed as an Adult: A Regression Discontinuity Estimate of the Crime Effects of Charging Non-Transfer Juveniles as Adults
作为成人处理:将非移交青少年指控为成人的犯罪影响的回归断点估计
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charles E. Loeffler;Ben Grunwald;Richard Berk;Ben Hansen;John MacDonald;Justin McCrary;Tom Miles;Dan Nagin
  • 通讯作者:
    Dan Nagin
Correction to: Working with Misspecified Regression Models
  • DOI:
    10.1007/s10940-020-09464-8
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Richard Berk;Lawrence Brown;Andreas Buja;Edward George;Linda Zhao
  • 通讯作者:
    Linda Zhao
Statistical inference and meta-analysis

Richard Berk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Berk', 18)}}的其他基金

Ensemble Methods for Data Analysis in the Behavioral, Social and Economic Sciences
行为、社会和经济科学中数据分析的集成方法
  • 批准号:
    0653802
  • 财政年份:
    2006
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Methods for Developing and Evaluating Computer Models Used in Integrated Assessment
数学科学:开发和评估用于综合评估的计算机模型的方法
  • 批准号:
    9634297
  • 财政年份:
    1996
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant
A Factorial Survey on How People Experience Climate Change
关于人们如何经历气候变化的析因调查
  • 批准号:
    9122990
  • 财政年份:
    1992
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant
A Factorial Survey On How People Experience Climate Change
关于人们如何经历气候变化的析因调查
  • 批准号:
    9010095
  • 财政年份:
    1990
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Continuing Grant
NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Discovery Projects
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant
Efficient and effective methods for classifying massive time series data
海量时间序列数据高效有效的分类方法
  • 批准号:
    DP240100048
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Discovery Projects
Critical Data Science Methods to Broaden Capacity in STEM Education Research
扩大 STEM 教育研究能力的关键数据科学方法
  • 批准号:
    2321179
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Standard Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Biodiversity and the Evolving Earth: New Data, New Methods, New Insights
生物多样性和不断演变的地球:新数据、新方法、新见解
  • 批准号:
    2889701
  • 财政年份:
    2023
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Studentship
Developing methods for Big Data capture in support of the Digital Twin for Investment Casting Shelling
开发大数据捕获方法以支持熔模铸造脱壳的数字孪生
  • 批准号:
    2889986
  • 财政年份:
    2023
  • 资助金额:
    $ 48.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了