Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces and Computation

合作研究:FRG:最小曲面、模空间和计算

基本信息

  • 批准号:
    0440545
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-05-27 至 2007-06-30
  • 项目状态:
    已结题

项目摘要

The global theory of minimal surfaces in space is in a phase ofexplosive growth. Many new methods of constructing completeembedded minimal surfaces have recently been found; in place of adearth of examples just a few years ago, we now have a quitevaried collection of surfaces, including infinite families. Abasic problem is to classify these examples, i.e. collect theminto families with common properties and understoodlimits. Fruitful approaches have recently been developed thatcombine numerical simulation with methods from the theory ofgeometric structures on surfaces and classical complex analysis,notably Teichmuller theory. Some of the problems the team willattack are: Are there embedded minimal surfaces with oneheliciodal end and arbitrary genus? Is the classical Scherksurface the unique desingularization of a pair of planes? Ofwhat families is the Scherk surface the limit point? At the sametime, the group hopes to make progress on simulation of minimalsurfaces. For example, we hope to set up a library of Weierstrassrepresentations of minimal surfaces which is reproducible, fullydocumented, and useful as a research tool.A guiding philosophy in many areas of science, from physics tobiochemistry to ecology, is that nature is maximally efficient;indeed, many explanations of natural phenomena have at theirfoundation the assumption that the phenomenon has optimized someor several of its features in the expression we witness. At itsbase, this philosophical principle is mathematical in nature: wesearch for principles in science that can be formulated asextremal problems. In mathematics, we can make this assumption ofoptimality very rigorous by expressing it as an equation. Thisleaves us with the problem of understanding all of the solutionsof that equation. In this project, we aim to study one very richtype of optimization problem, the minimal surface problem, whichis already known to have a number of quite subtlecharacteristics. (A minimal surface is one for which each smallpiece has less area than any other surface with the sameboundary.) The study of these surfaces has its origins inphysical problems studied first by Euler; then, a century later,the problem also arose in the studies of the behavior of rotatingdroplets and soap films by F. Plateau. Today the applicationsrange from cosmology to the understanding of the structure ofstable periodic structures in compound copolymers. As in manyother optimization problems, for the minimal surface problem, wedo not have much general information about solutions to theequation expressing extremality. At present though, we do have awide variety of examples which help to guide our intuition, andwhich we are beginning to organize. It is thus a good modelproblem, enriching our understanding of all optimizationproblems.
空间极小曲面的整体理论正处于爆炸性发展阶段。 最近发现了许多构造完全嵌入极小曲面的新方法,取代了几年前的大量例子,我们现在有了各种各样的曲面集合,包括无限族。一个基本的问题是对这些例子进行分类,即把它们收集到具有共同性质和已知极限的族中。最近已经开发出富有成效的方法,将数值模拟与表面几何结构理论和经典复分析方法相结合,特别是Teichmuller理论。这个小组将要解决的问题有:是否存在具有一个螺旋端点和任意亏格的嵌入极小曲面?经典Scherk曲面是一对平面的唯一去奇异化吗? Scherk曲面是什么族的极限点?与此同时,该小组希望在最小表面模拟方面取得进展。例如,我们希望建立一个魏尔斯特拉斯最小曲面表示的图书馆,它是可复制的,有充分的文献记载,并可作为一种有用的研究工具。从物理学到生物化学到生态学,许多科学领域的指导思想是,自然是最有效的;事实上,许多对自然现象的解释都是以这样一种假设为基础的,即这种现象在我们的表达中优化了它的某些或几个特征。证人 在其基础上,这一哲学原则是数学性质的:我们认为科学中的原则可以表述为极端问题。在数学中,我们可以通过将其表达为一个方程来使这种最优性假设非常严格。 这就给我们留下了一个问题,那就是如何理解这个方程的所有解。在这个项目中,我们的目标是研究一个非常丰富的优化问题,最小曲面问题,这已经知道有一些相当微妙的特点。(一个最小曲面是这样的曲面,在这个曲面上,每一小片的面积都小于具有相同边界的任何其他曲面。)对这些表面的研究起源于欧拉首先研究的物理问题;然后,世纪后,这个问题也出现在F.高原今天,它的应用范围从宇宙学到对化合物共聚物中稳定周期结构的理解.与许多其他优化问题一样,对于极小曲面问题,我们没有太多关于表示极值的方程的解的一般信息。目前,我们确实有各种各样的例子来帮助引导我们的直觉,我们正在开始组织这些例子。因此,它是一个很好的模型问题,丰富了我们对所有优化问题的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hoffman其他文献

Hybrid PET/MRI Nanoparticle Development and Multi-Modal Imaging
One-Sided Tolerance Limits for Balanced and Unbalanced Random Effects Models
平衡和不平衡随机效应模型的单边容差极限
  • DOI:
    10.1198/tech.2010.09171
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    David Hoffman
  • 通讯作者:
    David Hoffman
A STEPWISE APPROACH FOR ESTIMATING CUMULATIVE LIVE BIRTH RATES FOR PATIENTS CONSIDERING IVF
  • DOI:
    10.1016/j.fertnstert.2022.09.279
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Justina Hyunjii Cho;Kathleen A. Miller;David Hoffman;Oleksii Barash;Louis Weckstein;Michael Levy;Alan Copperman;Paxton Maeder-York;Kevin Loewke
  • 通讯作者:
    Kevin Loewke
Poster 188: Percutaneous Intradiskal Aspiration of a Lumbar Vacuum Disk Herniation: A Case Report
  • DOI:
    10.1016/j.pmrj.2010.07.218
  • 发表时间:
    2010-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kevin I. Pak;David Hoffman;Gregory E. Lutz
  • 通讯作者:
    Gregory E. Lutz
THE COST OF REUSABLE ENDOSCOPIC RETROGRADE CHOLANGIOPANCREATOGRAPHY (ERCP) IN THE US: A SYSTEMATIC REVIEW
美国可重复使用的内镜逆行胰胆管造影术(ERCP)的成本:系统评价
  • DOI:
    10.1016/j.gie.2023.04.995
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    David Hoffman;Christina Cool;David Diehl
  • 通讯作者:
    David Diehl

David Hoffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hoffman', 18)}}的其他基金

Motivations and Movement: Modeling Migration to Buffer Zones of Three Costa Rican National Parks
动机和运动:模拟向哥斯达黎加三个国家公园缓冲区的迁移
  • 批准号:
    1157495
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Minimal Surfaces, Moduli Spaces and Computation
合作研究:FRG:最小曲面、模空间和计算
  • 批准号:
    0139410
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Colombia Cooperative Research: Infrared Emission from Charge Oscillations in Quantum Wells in a Laser Field
美国-哥伦比亚合作研究:激光场量子阱中电荷振荡的红外发射
  • 批准号:
    9725501
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Differential Geometry and the Geometric Analysis of Embedded Minimal Surfaces
数学科学:微分几何问题和嵌入最小曲面的几何分析
  • 批准号:
    9596201
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Protein Structure Determinations by NMR and Joint NMR-X-ray Refinement
通过 NMR 和联合 NMR-X 射线精修确定蛋白质结构
  • 批准号:
    9406065
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Differential Geometry and the Geometric Analysis of Embedded Minimal Surfaces
数学科学:微分几何问题和嵌入最小曲面的几何分析
  • 批准号:
    9403640
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Acquisition of a 500 MHz Triple-Resonance NMR Spectrometer
获取 500 MHz 三重共振核磁共振波谱仪
  • 批准号:
    9413770
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Grant for Exploratory Research: Monte Carlo-Gaussian Importance Sampling Evaluation of Real-Time Feynman Path Integrals
探索性研究资助:实时费曼路径积分的蒙特卡罗-高斯重要性采样评估
  • 批准号:
    9201967
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Non-Linear Problems in Differential Geometry and Mathematical Physics
数学科学:微分几何和数学物理中的非线性问题
  • 批准号:
    9101903
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computational Methods in Mathematics and the Physical Sciences
数学和物理科学的计算方法
  • 批准号:
    9011083
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了