Relaxation theorems and necessary optimality conditions for semiconvex multidimensional control problems
半凸多维控制问题的松弛定理和必要的最优性条件
基本信息
- 批准号:169104499
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Up to now, the proof of Pontryagin's maximum principle for multidimensional control problems is closely related to the convexity or the convex relaxability of integrand and control domain. In order to overcome this limitation, the proposal aims to derive first-order optimality conditions for multidimensional control problems with first-order PDE's involving either polyconvex or quasiconvex data from the outset or requiring nonconvex relaxation. Proof techniques, which combine elements of polyconvex analysis with discretization methods and properties of gradient Young measures, will be applied. The connections between the proof of necessary optimality conditions and the semiconvex relaxation, which is mandatory for problems in the "vectorial" case, shall be systematically investigated.
迄今为止,多维控制问题的庞特里亚金极大原理的证明与被积域和控制域的凸性或凸松弛性密切相关。为了克服这一限制,该提案旨在推导一阶PDE多维控制问题的一阶最优性条件,该问题从一开始就涉及多凸或拟凸数据或需要非凸松弛。证明技术,它结合了多凸分析的元素与离散化方法和梯度杨测度的性质,将被应用。必要最优性条件的证明与半向量松弛之间的联系,对于“向量”情况下的问题是必需的,将被系统地研究。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OPTIMAL CONTROL OF THE BIDOMAIN SYSTEM (III): EXISTENCE OF MINIMIZERS AND FIRST-ORDER OPTIMALITY CONDITIONS
- DOI:10.1051/m2an/2012058
- 发表时间:2013-07-01
- 期刊:
- 影响因子:1.9
- 作者:Kunisch, Karl;Wagner, Marcus
- 通讯作者:Wagner, Marcus
Multimodal image registration by elastic matching of edge sketches via optimal control
通过最优控制对边缘草图进行弹性匹配的多模态图像配准
- DOI:10.3934/jimo.2014.10.567
- 发表时间:2014
- 期刊:
- 影响因子:1.3
- 作者:Angelov;Wagner
- 通讯作者:Wagner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Privatdozent Dr. Marcus Wagner其他文献
Privatdozent Dr. Marcus Wagner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows