Scalable Numerical Methods for Adiabatic Quantum Preparation
用于绝热量子制备的可扩展数值方法
基本信息
- 批准号:169213306
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many physically relevant models include time-dependent Hamilton operators. When the time-dependence is slow in comparison to the energy gaps of the spectrum, the adiabatic theorem implies that a quantum system prepared in the ground state of an initial Hamiltonian will completely follow the instantaneous ground state. This can be exploited to prepare interesting ground states from simple ones by slowly deforming control parameters in the Hamiltonian. The final ground states can - for example - be entangled, be useful for one-way quantum computation or even directly encode the solution to a difficult problem. The scheme has nice robustness features: When the reservoir temperature is significantly smaller than the time-dependent energy gap above the ground state, the decoherent interactions may drag the system towards its ground state and may therefore be even helpful in the goal to solve the problem. However, for critical parameter values the ground state itself may change in a quite abrupt manner, which is typically associated with a nearly vanishing energy gap. In the infinite size limit this corresponds to a quantum phase transition, whereas for finite-size systems one usually has a finite energy gap. This scaling behavior of the energy gap poses a severe problem both for the adiabatic implementation (diverging adiabatic runtime) and its robustness against thermal excitations. There exist only a few exactly solvable models that exhibit a quantum phase transition in the infinite size limit, such that in general one has to use numerical simulations. The present proposal suggests the development of intelligent numerical methods for the time-dependent tracking of eigenvalue problems and to study the performance of adiabatic algorithms in the case of open and closed quantum systems. More specifically, these new algorithms must have an adequate accuracy even in critical parameter regions. This shall be achieved by adaptively matching not only the discretization level, the step size of the eigenvalue tracer but also the number of calculated eigenvalues (and therefore also the size of the traced subspace) via error and condition estimators to the behavior of the system.
许多物理上相关的模型包括时间相关的汉密尔顿算子。当与光谱的能量间隙相比,时间依赖性较慢时,绝热定理意味着在初始哈密顿量的基态下制备的量子系统将完全遵循瞬时基态。这可以通过在哈密顿量中缓慢变形控制参数来从简单的基态制备有趣的基态。例如,最终基态可以纠缠在一起,可以用于单向量子计算,甚至可以直接编码一个难题的解决方案。该方案具有良好的鲁棒性:当储层温度明显小于基态以上的时变能隙时,退相干相互作用可能会将系统拖向基态,因此甚至可能有助于实现解决问题的目标。然而,对于关键参数值,基态本身可能以一种非常突然的方式变化,这通常与几乎消失的能隙有关。在无限大小的极限中,这对应于量子相变,而对于有限大小的系统,通常具有有限的能隙。这种能量间隙的标度行为对绝热实现(发散绝热运行时间)及其对热激励的鲁棒性都提出了严重的问题。只有少数可精确解的模型能在无限大小的极限下表现出量子相变,因此通常必须使用数值模拟。本建议建议发展特征值问题随时间跟踪的智能数值方法,并研究在开放和封闭量子系统情况下绝热算法的性能。更具体地说,这些新算法即使在关键参数区域也必须具有足够的精度。这将通过自适应匹配来实现,不仅是离散化水平,特征值跟踪器的步长,还有计算的特征值的数量(因此也是跟踪子空间的大小),通过误差和条件估计器来匹配系统的行为。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Implementation of stimulated Raman adiabatic passage in degenerate systems by dimensionality reduction
通过降维实现简并系统中的受激拉曼绝热通道
- DOI:10.1103/physreva.88.013404
- 发表时间:2013
- 期刊:
- 影响因子:2.9
- 作者:G. Bevilacqua;G. Schaller;T. Brandes;F. Renzoni
- 通讯作者:F. Renzoni
Transport as a sensitive indicator of quantum criticality
- DOI:10.1088/0953-8984/26/26/265001
- 发表时间:2014-03
- 期刊:
- 影响因子:0
- 作者:G. Schaller;M. Vogl;Tobias Brandes
- 通讯作者:G. Schaller;M. Vogl;Tobias Brandes
Nonequilibrium quantum phase transitions in the Ising model
- DOI:10.1103/physreva.86.063627
- 发表时间:2012-12-21
- 期刊:
- 影响因子:2.9
- 作者:Bastidas, V. M.;Emary, C.;Brandes, T.
- 通讯作者:Brandes, T.
Criticality in transport through the quantum Ising chain.
通过量子伊辛链传输的关键性
- DOI:10.1103/physrevlett.109.240402
- 发表时间:2012
- 期刊:
- 影响因子:8.6
- 作者:M. Vogl;G. Schaller;T. Brandes
- 通讯作者:T. Brandes
Probing nonlinear adiabatic paths with a universal integrator
- DOI:10.1103/physreva.89.032308
- 发表时间:2013-11
- 期刊:
- 影响因子:2.9
- 作者:Michael Hofmann;G. Schaller
- 通讯作者:Michael Hofmann;G. Schaller
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Tobias Brandes (†)其他文献
Professor Dr. Tobias Brandes (†)的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Tobias Brandes (†)', 18)}}的其他基金
New theoretical methods for Full Counting Statistics and noise spectra in nano-scale electronic systems with long memories
长记忆纳米级电子系统中全计数统计和噪声谱的新理论方法
- 批准号:
37945977 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Elektron-Phonon- und Elektron-Photon-Wechselwirkungseffekte im elektronischen Transport durch gekoppelte Quantenpunkte
耦合量子点电子传输中的电子-声子和电子-光子相互作用效应
- 批准号:
5205876 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
- 批准号:
2240180 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant