CAREER: Disorder and Symmetries in Condensed Matter Systems
职业:凝聚态系统中的无序性和对称性
基本信息
- 批准号:0449521
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL EXPLANATION:This CAREER award supports theoretical research and education in the field of condensed matter physics. One exciting development in condensed matter physics is the realization that randomly scattered impurities, always present in materials, can result in systematic reproducible behavior, sometimes producing new physical phenomena which would not have existed without disorder. Developments in the theory of disorder led to successes in mesoscopic physics, and it also contributed to our understanding of the quantum Hall effect, second order phase transitions, and other phenomena.In the research component, the PI will focus on the aspects of the theory of disorder that are universal. In particular, the PI aims to elucidate the universal aspects of low-energy bosonic excitations in a disordered environment. Some of the most important problems in this field include the "boson peak", the excess of phonons in disordered solids and glasses, and the heat transport of magnons in random magnets. The PI plans to study phonons in random elastic media as a model of disordered solids and investigate the peak in their density of states at wavelength of the order of typical disorder correlation length. The PI plans to study disorder in nanoscale superconducting grains. At issue here is how a diffusive disordered system responds to the introduction of a small number of strong scatterers. The PI will study the second order phase transition in the presence of disorder using the exact methods of conformal field theory. It appears to be experimentally possible to create many-body condensed matter states in cold atomic gases. Unlike those in typical condensed matter systems, the interactions between the atoms can be tuned externally, and this allows to custom manufacture atomic systems with various interesting properties. It may be possible to create quantum Hall-like topological states in these atomic systems. Such states have been proposed as possible building blocks of quantum computers. The topological states in atomic condensates are expected to be far more robust than their quantum Hall counterparts, making them more suitable for practical applications. The PI will investigate different ways of creating a tunable non-Abelian quantum Hall-like state in the fermionic atomic condensates. In the education component, the PI will devise and teach a new set of courses designed to bring many-body physics to all interested graduate students and bright undergraduate physics majors. The aim is to teach modern theoretical physics in a logically consistent way, avoiding representing it as just a collection of different unrelated phenomena. In particular, the PI aims to devise a set of projects for undergraduate students taking the class "Introduction to Solid State Physics," to help students to study the material actively, as opposed to passively. The PI also plans to work with minority students through a strategic collaboration and to participate in outreach activities.NON-TECHNICAL EXPLANATION:This CAREER award supports theoretical research and education in the field of condensed matter physics. An exciting development in condensed matter physics is the realization that randomly scattered impurities, always present in materials, can result in systematic reproducible behavior, sometimes producing new physical phenomena which would not have existed without disorder. Developments in the theory of disorder led to successes in mesoscopic physics, and have also contributed to our understanding of the quantum Hall effect, second order phase transitions, and other phenomena.In the research component, the PI focuses on the aspects of the theory of disorder that are universal, that is, independent of the microscopic details of disorder in real materials and are likely to be found in many different physical systems. The PI aims to investigate a variety of topics from lattice vibrations in disordered materials and disorder in nanoscale superconducting grains to the theory of phase transition in disordered systems. It appears to be experimentally possible to create states in systems of very cold atoms trapped by laser light that resemble the states of electrons in various interesting materials. The interactions between the atoms can be more easily tuned than the interactions between electrons opening the possibility to custom manufacture atomic systems with various interesting properties. It may be possible to create states in these atomic systems that have been proposed as possible building blocks of quantum computers. The PI will investigate different ways of creating cold-atom states that are of fundamental scientific interest and may have impact on the emerging field of quantum information science. In the education component, the PI will devise and teach a new set of courses designed to bring many-body physics to all interested graduate students and bright undergraduate physics majors. The aim is to teach modern theoretical physics in a logically consistent way, avoiding representing it as just a collection of different unrelated phenomena. In particular, the PI aims to devise a set of projects for undergraduate students taking the class "Introduction to Solid State Physics," to help students to study the material actively, as opposed to passively. The PI also plans to work with minority students through a strategic collaboration and to participate in outreach activities.
非技术性解释:该职业奖支持凝聚态物理领域的理论研究和教育。凝聚态物理学的一个令人兴奋的发展是认识到,总是存在于材料中的随机分散的杂质可以导致系统的可重复行为,有时会产生新的物理现象,如果没有无序,这些现象就不会存在。无序理论的发展导致了介观物理学的成功,它也有助于我们理解量子霍尔效应,二阶相变和其他现象。在研究部分,PI将专注于无序理论的普遍性方面。特别是,PI旨在阐明在无序环境中低能玻色子激发的普遍性。这一领域中的一些重要问题包括“玻色子峰”、无序固体和玻璃中声子的过剩以及随机磁体中磁振子的热输运。PI计划研究随机弹性介质中的声子作为无序固体的模型,并研究其状态密度在典型无序相关长度的波长处的峰值。 PI计划研究纳米级超导颗粒中的无序。这里的问题是如何扩散无序系统响应于少量强散射体的引入。PI将使用共形场论的精确方法研究存在无序时的二级相变。在冷原子气体中创造多体凝聚态似乎是实验上可能的。与典型的凝聚态系统不同,原子之间的相互作用可以在外部进行调整,这允许定制具有各种有趣特性的原子系统。在这些原子系统中可能产生量子霍尔拓扑态。这种状态已经被提议作为量子计算机的可能构建块。原子凝聚体中的拓扑态预计比量子霍尔对应物更稳健,使其更适合于实际应用。PI将研究在费米子原子凝聚体中创建可调谐非阿贝尔量子霍尔态的不同方法。在教育部分,PI将设计和教授一套新的课程,旨在将多体物理学带给所有感兴趣的研究生和聪明的本科物理专业学生。其目的是以逻辑上一致的方式教授现代理论物理学,避免将其仅仅表示为不同的不相关现象的集合。特别是,PI旨在为本科生设计一套项目,以帮助学生主动学习材料,而不是被动学习。PI还计划通过战略合作与少数民族学生一起工作,并参加外展活动。非技术说明:该职业奖支持凝聚态物理领域的理论研究和教育。凝聚态物理学的一个令人兴奋的发展是认识到,总是存在于材料中的随机分散的杂质可以导致系统的可重复行为,有时会产生新的物理现象,如果没有无序,这些现象就不会存在。无序理论的发展导致了介观物理学的成功,也有助于我们理解量子霍尔效应,二级相变和其他现象。在研究部分,PI专注于无序理论的普遍性方面,即,独立于真实的材料中无序的微观细节,并且可能在许多不同的物理系统中发现。PI旨在研究从无序材料中的晶格振动和纳米超导晶粒中的无序到无序系统中的相变理论的各种主题。在实验上,似乎有可能在激光捕获的非常冷的原子系统中产生类似于各种有趣材料中电子状态的状态。原子之间的相互作用可以比电子之间的相互作用更容易调整,这为定制制造具有各种有趣特性的原子系统提供了可能性。有可能在这些原子系统中创建状态,这些原子系统被提议作为量子计算机的可能构建块。PI将研究创造冷原子态的不同方法,这些方法具有基本的科学兴趣,可能会对量子信息科学的新兴领域产生影响。在教育部分,PI将设计和教授一套新的课程,旨在将多体物理学带给所有感兴趣的研究生和聪明的本科物理专业学生。其目的是以逻辑上一致的方式教授现代理论物理学,避免将其仅仅表示为不同的不相关现象的集合。特别是,PI旨在为本科生设计一套项目,以帮助学生主动学习材料,而不是被动学习。PI还计划通过战略合作与少数民族学生合作,并参加外联活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Gurarie其他文献
Conformal algebras of two-dimensional disordered systems
二维无序系统的共形代数
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Victor Gurarie;Victor Gurarie;Andreas W. W. Ludwig - 通讯作者:
Andreas W. W. Ludwig
C-THEOREM FOR DISORDERED SYSTEMS
无序系统的 C 定理
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Victor Gurarie - 通讯作者:
Victor Gurarie
The Haldane-Rezayi quantum Hall state and conformal field theory
Haldane-Rezayi 量子霍尔态和共形场论
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Victor Gurarie;Michael Flohr;Chetan Nayak - 通讯作者:
Chetan Nayak
Some generic aspects of bosonic excitations in disordered systems.
无序系统中玻色子激发的一些一般方面。
- DOI:
10.1103/physrevlett.89.136801 - 发表时间:
2002 - 期刊:
- 影响因子:8.6
- 作者:
Victor Gurarie;J. Chalker - 通讯作者:
J. Chalker
Global large time dynamics and the generalized Gibbs ensemble
全球大时间动力学和广义吉布斯系综
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Victor Gurarie - 通讯作者:
Victor Gurarie
Victor Gurarie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Gurarie', 18)}}的其他基金
Phases and phase transitions of quantum gases on optical lattices
光学晶格上量子气体的相和相变
- 批准号:
1205303 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
双极性躁郁症(Bipolar Disorder)的人诱导多能干细胞模型的建立和神经病理研究
- 批准号:31471020
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
Role of intestinal serotonin transporter in post traumatic stress disorder
肠道血清素转运蛋白在创伤后应激障碍中的作用
- 批准号:
10590033 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
- 批准号:
502588 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Protein disorder in crop stress adaptation
作物逆境适应中的蛋白质紊乱
- 批准号:
BB/Z514986/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Elucidating the role of Cnot3 in regulating social behavior in Autism Spectrum Disorder
阐明 Cnot3 在调节自闭症谱系障碍社会行为中的作用
- 批准号:
24K18632 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
I-Corps: Integrated Wearable System for Management of Substance Use Disorder
I-Corps:用于管理药物使用障碍的集成可穿戴系统
- 批准号:
2401028 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ADMIRED - Ai Driven MonItoRing Equipment for Bipolar Disorder
钦佩 - 人工智能驱动的双相情感障碍监测设备
- 批准号:
10089421 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
- 批准号:
MR/Y004000/1 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Hyperkinetic Movement Disorderの発現機序の解明とGABA放出抑制薬による治療
阐明多动性运动障碍的机制和 GABA 释放抑制剂的治疗
- 批准号:
24K10655 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diagnostic and Therapeutic Potential of Circular RNAs in Autism Spectrum Disorder
环状 RNA 在自闭症谱系障碍中的诊断和治疗潜力
- 批准号:
24K10503 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Aspen Winter Conference: Disorder and Quantum Phases of Matter
会议:阿斯彭冬季会议:物质的无序和量子相
- 批准号:
2409357 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant