Accelerated Dynamical Spin Up of Ocean General Circulation Models

海洋环流模型的加速动态旋转

基本信息

  • 批准号:
    0449703
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-10-15 至 2006-03-31
  • 项目状态:
    已结题

项目摘要

0449703The slow dynamical adjustment of the deep ocean creates a computational bottleneck for models of the ocean circulation. In particular, integrating ocean GCMs to equilibrium remains prohibitively expensive, limiting our ability, for example, to simulate climate under different (paleo) boundary conditions, systematically explore sensitivity to parameters and representations of sub-grid scale physics, or to study the ventilation of the ocean using tracers such as natural radiocarbon. The goal of the proposed study accelerating the dynamical spin up of ocean models with a recently developed method for efficient tracer simulation in ocean models. This scheme, known as the "matrix method", makes it feasible to directly obtain equilibrium solutions to the tracer equations without explicit time integration. The matrix method, which is linear and exact for passive tracers, will be adapted to the nonlinear spin up problem by embedding it into an iterative algorithm to "shoot" toward an equilibrium circulation. The proposed study will make extensive use of recent developments in scientific computing and numerical analysis, in particular, the "Jacobian-Free Newton-Krylov" class of methods.The proposed study is exploratory and high-risk because the linear tracer model will be extended to the non-linear spin-up problem. The accuracy and numerical efficiency of the method is hard to predict until after it is developed.Broader impacts: An important outcome of this research will be the development of accurate and efficient methods for tracer simulation and GCM spin up. These tools will be especially useful for paleoclimate studies. The proposed algorithms will be implemented in the widely used MOM ocean GCM to ensure its accesibility to a broad group of researchers. However, the techniques can be applied to any existing GCM, and numerical code developed as part of this research will be made freely available to the research community.
[449703]深海缓慢的动力调整给海洋环流模式造成了计算瓶颈。特别是,将海洋gcm整合到平衡状态仍然非常昂贵,限制了我们的能力,例如,模拟不同(古)边界条件下的气候,系统地探索对参数和亚网格尺度物理表示的敏感性,或使用天然放射性碳等示踪剂研究海洋通风。提出的研究目标是利用最近开发的海洋模型中有效的示踪剂模拟方法来加速海洋模型的动态自旋。该方案被称为“矩阵法”,使得无需显式时间积分即可直接获得示踪方程的平衡解成为可能。矩阵法对于被动示踪剂是线性且精确的,通过将非线性自旋向上问题嵌入到迭代算法中,使其“射向”平衡循环,从而适应非线性自旋向上问题。拟议的研究将广泛利用科学计算和数值分析方面的最新发展,特别是“雅可比-自由牛顿-克雷洛夫”类方法。所提出的研究是探索性的和高风险的,因为线性示踪模型将扩展到非线性自旋问题。该方法的精度和数值效率在开发出来之前很难预测。更广泛的影响:这项研究的一个重要成果将是开发准确有效的示踪剂模拟和GCM自旋上升方法。这些工具对古气候研究特别有用。所提出的算法将在广泛使用的MOM海洋GCM中实现,以确保其可被广泛的研究人员使用。然而,这些技术可以应用于任何现有的GCM,并且作为本研究的一部分开发的数字代码将免费提供给研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samar Khatiwala其他文献

Recent and future trends in atmospheric radiocarbon
大气放射性碳的近期和未来趋势
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Graven;Ryo Fujita;Ralph Keeling;Samar Khatiwala;Joeri Rogelj;Xiaomei Xu
  • 通讯作者:
    Xiaomei Xu

Samar Khatiwala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samar Khatiwala', 18)}}的其他基金

NSFGEO-NERC: Understanding the Drivers of Inert Gas Saturation to Better Constrain Ice Core-Derived Records of Past Mean Ocean Temperature
NSFGEO-NERC:了解惰性气体饱和的驱动因素,以更好地限制冰芯记录的过去平均海洋温度
  • 批准号:
    NE/W007258/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSFGEO-NERC: Quantifying the Modern and Glacial Ocean's Carbon Cycle Including Isotopes
NSFGEO-NERC:量化现代和冰川海洋的碳循环(包括同位素)
  • 批准号:
    NE/T009357/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Fast Spin Up of Ocean General Circulation Models Using Newton-Krylov Methods
合作研究:使用牛顿-克雷洛夫方法快速旋转海洋环流模型
  • 批准号:
    0824635
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Tidal Resonances in the Present-Day and Ice-Age Oceans
合作研究:了解当今和冰河时​​代海洋的潮汐共振
  • 批准号:
    0623611
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research:Interaction of eddies with mixed layers
合作研究:涡流与混合层的相互作用
  • 批准号:
    0336808
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Sensitivity of Persistence Characteristics of Atmospheric Weather Regimes
大气天气状况持续特征的敏感性
  • 批准号:
    0233853
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Dynamical properties of quantum spin-liquid states in frustrated magnets
受挫磁体中量子自旋液态的动力学特性
  • 批准号:
    577734-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Dynamical non-adiabatic theory of chemical bond with localized electron wave packet with valence-bond spin-coupling
价键自旋耦合局域电子波包化学键动力学非绝热理论
  • 批准号:
    19K22173
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Neutron spin echo and small angle neutron scattering studies on dynamical properties of topological spin orders
拓扑自旋序动力学性质的中子自旋回波和小角中子散射研究
  • 批准号:
    19H01856
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamical Probes for Spin Liquids (E07*)
用于自旋液体的动态探针 (E07*)
  • 批准号:
    397268809
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    CRC/Transregios
Development of the spin frustration due to dynamical spin equilibrium and its induced successive magnetic phase transitions
由于动态自旋平衡及其诱发的连续磁相变而产生自旋挫败
  • 批准号:
    16K05421
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamical Structures in Hole-doped 1D Quantum Spin Chains
空穴掺杂一维量子自旋链中的动力学结构
  • 批准号:
    26400376
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of New Molecular Magnetism Based on Dynamical Spin Equilibrium
基于动态自旋平衡的新型分子磁学研究进展
  • 批准号:
    26620057
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Dynamical Spin Pumping in Graphene-based Spintronics Devices
基于石墨烯的自旋电子器件中的动态自旋泵浦
  • 批准号:
    1266049
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neutron scattering spectroscopic study of dynamical hierarchical structure of itinerant electron spin system
巡回电子自旋系统动力学分级结构的中子散射光谱研究
  • 批准号:
    25287081
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Local spin-moment analysis realized by dynamical diffraction effects on inelastic electron scattering theory and experiment
非弹性电子散射理论与实验中动态衍射效应实现的局域自旋矩分析
  • 批准号:
    24686070
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了