United States-Hong Kong (REU) in Numerical Analysis and Scientific Computing

美国-香港(REU)数值分析和科学计算

基本信息

  • 批准号:
    0453600
  • 负责人:
  • 金额:
    $ 40.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-09-15 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

The Department of Mathematical and Computer Sciences at the Colorado School of Mines (CSM) will establish an International REU Site in Hong Kong. The focus of this activity will be numerical analysis and scientific computing with application to problems in applied science and engineering. The program will involve internationally known Numerical Analysis/Scientific Computing faculty from four major Hong Kong universities: Hong Kong Baptist University, Chinese University of Hong Kong, City University of Hong Kong, and Hong Kong University of Science and Technology. The primary location of the program will be at Hong Kong Baptist University. The eight-week program will be offered during each of the summers of 2005, 2006 and 2007, and will involve ten U.S. student participants, the majority of whom will be non-CSM students. The participating students will engage in team research with faculty mentors from the four Hong Kong universities on topics from areas such as numerical linear algebra, wavelets, multidimensional integration and approximation, problem solving environments, and numerical partial differential equations. Each project will involve original research, blending algorithm development and analysis, both mathematical and computational.The program will introduce talented undergraduate students to the joy and excitement of discovery that comes from participating in a vibrant international research program. It will also enhance the students' technical expertise by providing them with the opportunity to see and experience research problems from a global perspective, and they will gain training and independence in working on research problems in a multi-cultural setting. It is anticipated that this REU experience will encourage more students to pursue advanced degrees in the mathematical sciences with an international perspective.
科罗拉多矿业学院数学和计算机科学系将在香港建立一个国际REU站点。这项活动的重点将是数值分析和科学计算与应用科学和工程问题的应用。该计划将包括来自香港四所主要大学的国际知名数值分析/科学计算教授:香港浸会大学、香港中文大学、香港城市大学和香港科技大学。课程的主要地点将在香港浸会大学。这个为期八周的项目将于2005年、2006年和2007年的每个夏季进行,将有10名美国学生参加,其中大多数是非csm学生。参与计划的学生将与来自香港四所大学的导师进行小组研究,课题包括数值线性代数、小波、多维积分与逼近、问题解决环境和数值偏微分方程。每个项目都将涉及原始研究,混合算法开发和分析,包括数学和计算。该项目将向有才华的本科生介绍参与一个充满活力的国际研究项目所带来的发现的喜悦和兴奋。它还将提高学生的技术专长,为他们提供从全球角度看待和体验研究问题的机会,他们将获得在多元文化背景下研究问题的训练和独立性。预计这次REU的经历将鼓励更多的学生在具有国际视野的数学科学领域攻读高级学位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Graeme Fairweather其他文献

时间分数次Fokker-Planck方程向后欧拉正交样条配置方法
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Graeme Fairweather;Haixiang Zhang;Xuehua Yang;Da Xu
  • 通讯作者:
    Da Xu
A matrix decomposition MFS algorithm for axisymmetric biharmonic problems
  • DOI:
    10.1007/s10444-004-1808-6
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Graeme Fairweather;Andreas Karageorghis;Yiorgos-Sokratis Smyrlis
  • 通讯作者:
    Yiorgos-Sokratis Smyrlis
Matrix decomposition algorithms for the finite element Galerkin method with piecewise Hermite cubics
  • DOI:
    10.1007/s11075-008-9255-y
  • 发表时间:
    2008-11-25
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Bernard Bialecki;Graeme Fairweather;David B. Knudson;D. Abram Lipman;Que N. Nguyen;Weiwei Sun;Gadalia M. Weinberg
  • 通讯作者:
    Gadalia M. Weinberg
A quadratic spline collocation method for the Dirichlet biharmonic problem
  • DOI:
    10.1007/s11075-019-00676-z
  • 发表时间:
    2019-02-19
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Bernard Bialecki;Graeme Fairweather;Andreas Karageorghis;Jonathan Maack
  • 通讯作者:
    Jonathan Maack
The method of fundamental solutions for elliptic boundary value problems
  • DOI:
    10.1023/a:1018981221740
  • 发表时间:
    1998-09-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Graeme Fairweather;Andreas Karageorghis
  • 通讯作者:
    Andreas Karageorghis

Graeme Fairweather的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Graeme Fairweather', 18)}}的其他基金

Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
  • 批准号:
    0215491
  • 财政年份:
    2002
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
  • 批准号:
    9912293
  • 财政年份:
    2000
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
Orthogonal Spline Collocation Methods for Partial Differential Equations
偏微分方程的正交样条配置方法
  • 批准号:
    9696078
  • 财政年份:
    1995
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Workshop on the Method of Lines for Time-Dependent Problems
数学科学:时态问题直线法研讨会
  • 批准号:
    9402448
  • 财政年份:
    1994
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Orthogonal Spline Collocation Methods for Partial Differential Equations
偏微分方程的正交样条配置方法
  • 批准号:
    9403461
  • 财政年份:
    1994
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
CISE Postdoctoral Research Associateship in Computational Science and Engineering
CISE计算科学与工程博士后研究奖学金
  • 批准号:
    9310315
  • 财政年份:
    1993
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Implementation of Matrix Decomposition for Solving Linear Systems Arising in Orthogonal Spline Collocation for Separable Elliptic Boundary Value Problems
求解可分离椭圆边值问题正交样条配置中产生的线性系统的矩阵分解实现
  • 批准号:
    9103451
  • 财政年份:
    1991
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on Mathematical Foundations of the Boundary Element Method; May 9-13, 1988; Lexington, Kentucky
数学科学:NSF-CBMS 边界元方法数学基础区域会议;
  • 批准号:
    8714745
  • 财政年份:
    1988
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Boundary Methods For Elliptic Boundary Value Problems
椭圆边值问题的边界方法
  • 批准号:
    8102295
  • 财政年份:
    1981
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Boundary Methods For Elliptic Boundary Value Problems
椭圆边值问题的边界方法
  • 批准号:
    8002804
  • 财政年份:
    1980
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant

相似海外基金

MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Fellowship
The 2024 Gulf States Math Alliance Conference and Faculty Development Workshop
2024年海湾国家数学联盟会议暨教师发展研讨会
  • 批准号:
    2402471
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
  • 批准号:
    2305325
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Fellowship Award
Porous materials with interconvertible states
具有可相互转换状态的多孔材料
  • 批准号:
    24K17695
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
  • 批准号:
    2340060
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
  • 批准号:
    2350308
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Standard Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Continuing Grant
EEG Based Global Network Models and Platform for Brain States Assessment
基于脑电图的大脑状态评估全球网络模型和平台
  • 批准号:
    DP240102329
  • 财政年份:
    2024
  • 资助金额:
    $ 40.17万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了