Orthogonal Spline Collocation Methods for Partial Differential Equations
偏微分方程的正交样条配置方法
基本信息
- 批准号:9403461
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-09-15 至 1996-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the development of implementing new matrix decomposition algorithms for solving the systems of linear algebraic equations arising when orthogonal spline collocation (that is, spline collocation at Gauss points) is applied to separable, second order, linear problems on rectangular regions. These algorithms have application in the solution of nonseparable boundary value problems, problems on general regions, and time dependent problems. The success of matrix decomposition algorithms depends on knowledge of the eigenvalues and eigenvectors of matrices arising in corresponding two-point boundary value problems in one space dimension. Knowledge of such an eigensystem with respect to one coordinate variable reduces the original two-dimensional discrete problem to solving a collection of independent discrete two-point boundary value problems with respect to the other coordinate variable. A software package is developed implementing orthogonal spline collocation algorithms with polynomials of arbitrary order on nonuniform partitions in each coordinate direction. The package includes, as a special case, a fast transform solver for piecewise Hermite bicubic orthogonal spline collocation for Poisson's equation in various coordinate systems.
该项目涉及开发实现新的矩阵分解算法,用于求解当正交样条配置(即高斯点处的样条配置)应用于矩形区域上的可分离二阶线性问题时产生的线性代数方程组。 这些算法可应用于解决不可分离的边值问题、一般区域问题和时间相关问题。 矩阵分解算法的成功取决于对一维空间中相应两点边值问题中出现的矩阵特征值和特征向量的了解。 关于一个坐标变量的这种特征系统的知识将原始二维离散问题简化为求解关于另一个坐标变量的一组独立离散两点边值问题。 开发了一个软件包,在每个坐标方向的非均匀分区上实现具有任意阶多项式的正交样条配置算法。 作为一种特殊情况,该软件包包括一个快速变换求解器,用于各种坐标系中泊松方程的分段 Hermite 双三次正交样条配置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme Fairweather其他文献
时间分数次Fokker-Planck方程向后欧拉正交样条配置方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Graeme Fairweather;Haixiang Zhang;Xuehua Yang;Da Xu - 通讯作者:
Da Xu
A matrix decomposition MFS algorithm for axisymmetric biharmonic problems
- DOI:
10.1007/s10444-004-1808-6 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:2.100
- 作者:
Graeme Fairweather;Andreas Karageorghis;Yiorgos-Sokratis Smyrlis - 通讯作者:
Yiorgos-Sokratis Smyrlis
Matrix decomposition algorithms for the finite element Galerkin method with piecewise Hermite cubics
- DOI:
10.1007/s11075-008-9255-y - 发表时间:
2008-11-25 - 期刊:
- 影响因子:2.000
- 作者:
Bernard Bialecki;Graeme Fairweather;David B. Knudson;D. Abram Lipman;Que N. Nguyen;Weiwei Sun;Gadalia M. Weinberg - 通讯作者:
Gadalia M. Weinberg
A quadratic spline collocation method for the Dirichlet biharmonic problem
- DOI:
10.1007/s11075-019-00676-z - 发表时间:
2019-02-19 - 期刊:
- 影响因子:2.000
- 作者:
Bernard Bialecki;Graeme Fairweather;Andreas Karageorghis;Jonathan Maack - 通讯作者:
Jonathan Maack
The method of fundamental solutions for elliptic boundary value problems
- DOI:
10.1023/a:1018981221740 - 发表时间:
1998-09-01 - 期刊:
- 影响因子:2.100
- 作者:
Graeme Fairweather;Andreas Karageorghis - 通讯作者:
Andreas Karageorghis
Graeme Fairweather的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme Fairweather', 18)}}的其他基金
United States-Hong Kong (REU) in Numerical Analysis and Scientific Computing
美国-香港(REU)数值分析和科学计算
- 批准号:
0453600 - 财政年份:2005
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Scientific Computing Research Environments for the Mathematical Sciences
数学科学的科学计算研究环境
- 批准号:
0215491 - 财政年份:2002
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
- 批准号:
9912293 - 财政年份:2000
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Orthogonal Spline Collocation Methods for Partial Differential Equations
偏微分方程的正交样条配置方法
- 批准号:
9696078 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Workshop on the Method of Lines for Time-Dependent Problems
数学科学:时态问题直线法研讨会
- 批准号:
9402448 - 财政年份:1994
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
CISE Postdoctoral Research Associateship in Computational Science and Engineering
CISE计算科学与工程博士后研究奖学金
- 批准号:
9310315 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Implementation of Matrix Decomposition for Solving Linear Systems Arising in Orthogonal Spline Collocation for Separable Elliptic Boundary Value Problems
求解可分离椭圆边值问题正交样条配置中产生的线性系统的矩阵分解实现
- 批准号:
9103451 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on Mathematical Foundations of the Boundary Element Method; May 9-13, 1988; Lexington, Kentucky
数学科学:NSF-CBMS 边界元方法数学基础区域会议;
- 批准号:
8714745 - 财政年份:1988
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Boundary Methods For Elliptic Boundary Value Problems
椭圆边值问题的边界方法
- 批准号:
8102295 - 财政年份:1981
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Boundary Methods For Elliptic Boundary Value Problems
椭圆边值问题的边界方法
- 批准号:
8002804 - 财政年份:1980
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
- 批准号:
2245491 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
- 批准号:
2907459 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Studentship
Experimental and numerical studies into the wear of articulating spline couplings
铰接花键联轴器磨损的实验和数值研究
- 批准号:
2782812 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Studentship
Algebraic spline geometry: towards algorithmic shape representation
代数样条几何:走向算法形状表示
- 批准号:
EP/V012835/1 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Approximating shapes with algebraic spline geometry
用代数样条几何近似形状
- 批准号:
2601170 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Studentship
A study on spline filter that achieve both robustness and lower compatibility
兼具鲁棒性和低兼容性的样条滤波器研究
- 批准号:
20K04202 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elements: NSCI-Software -- A General and Effective B-Spline R-Matrix Package for Charged-Particle and Photon Collisions with Atoms, Ions, and Molecules
元素:NSCI 软件——用于带电粒子和光子与原子、离子和分子碰撞的通用且有效的 B 样条 R 矩阵包
- 批准号:
1834740 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
A spline maximum entropy method for integral equations and boundary value problems
积分方程和边值问题的样条最大熵法
- 批准号:
540031-2019 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
University Undergraduate Student Research Awards
A Study on Estimation of Functions with Discontinuous Points by Edge-Preserving Spline Smoothing and Its Applications
保边样条平滑估计含不连续点函数及其应用研究
- 批准号:
19K20361 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists