Quasiconformal Mappings in Geometry and Analysis

几何和分析中的拟共形映射

基本信息

项目摘要

ABSTRACTQuasi-conformal and related mappings form the largest class of maps that can be studied by analytic methods. Accordingly, their theory and their applications lie at the intersection of geometry and analysis and have connections to many other areas of mathematics and physics. While fundamental questions at the foundation of the theory of quasi-conformal maps remain open, recent advances in analysis on metric spaces have enlarged the range of applicability of these maps. Their theory may now lead to solutions of previously inaccessible problems in other fields such as geometric group theory. The purpose of this project is to explore current trends in the area. Specific topics of research include quasi-symmetric uniformization, dynamics on fractal spheres, the quasi-conformal Jacobian problem, quasi-regular maps and elliptic manifolds.The roots of this subject can be traced back to Gauss's work on cartography and surface geometry in the first half of the 19th century. He coined the phrase ``conformal map" and derived equations that govern the theory of planar quasi-conformal mappings. The full importance of this theory was only realized about a century later. By now quasi- conformal mappings have developed into one of the major tools in contemporary Geometric Function Theory.
拟共形映射及其相关映射是可用解析方法研究的最大一类映射。因此,他们的理论和应用位于几何和分析的交叉点,并与数学和物理的许多其他领域有联系。 虽然在准共形映射理论的基础上的基本问题仍然是开放的,但最近在度量空间分析方面的进展扩大了这些映射的适用范围。他们的理论现在可能导致解决以前无法在其他领域的问题,如几何群论。该项目的目的是探讨该领域的当前趋势。具体的研究课题包括拟对称一致化、分形球上的动力学、拟共形雅可比问题、拟正则映射和椭圆流形。这一课题的根源可以追溯到高斯在世纪上半叶对制图学和曲面几何的研究。他创造了短语“保形映射”和推导方程,管理理论的平面准保形映射。这个理论的全部重要性直到大约世纪以后才被认识到。目前,拟共形映射已发展成为当代几何函数论的主要工具之一。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Bonk其他文献

On the second part of Hilbert's fifth problem
  • DOI:
    10.1007/bf02571809
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
The addition formula for theta functions
  • DOI:
    10.1007/bf02215965
  • 发表时间:
    1997-02-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
Quasi-geodesic segments and Gromov hyperbolic spaces
  • DOI:
    10.1007/bf00181569
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
Distortion theorems for locally univalent Bloch functions
  • DOI:
    10.1007/bf02787103
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mario Bonk;David Minda;Hiroshi Yanagihara
  • 通讯作者:
    Hiroshi Yanagihara
Truncating Hyperbolic Densities

Mario Bonk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Bonk', 18)}}的其他基金

Expanding Thurston Maps and Fractal Geometry
扩展瑟斯顿图和分形几何
  • 批准号:
    2054987
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamics and Quasiconformal Geometry
动力学和拟共形几何
  • 批准号:
    1808856
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis and geometry on non-smooth spaces
非光滑空间的分析和几何
  • 批准号:
    1506099
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RTG Analysis
RTG分析
  • 批准号:
    1344970
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal geometry of fractals
分形的拟共形几何
  • 批准号:
    1162471
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings in Geometry and Analysis
几何和分析中的拟共形映射
  • 批准号:
    1058772
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Flat Forms, Bi-Lipschitz Parametrizations, and Calculus on Singular Spaces
平面形式、Bi-Lipschitz 参数化和奇异空间上的微积分
  • 批准号:
    1058283
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Flat Forms, Bi-Lipschitz Parametrizations, and Calculus on Singular Spaces
平面形式、Bi-Lipschitz 参数化和奇异空间上的微积分
  • 批准号:
    0652915
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonsmooth Structures and Geometric Function Theory
非光滑结构与几何函数理论
  • 批准号:
    0353549
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
  • 批准号:
    0244421
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
  • 批准号:
    2350530
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
  • 批准号:
    22K03356
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Invariants and Mappings in Several Complex Variables
几个复杂变量中不变量的几何和映射
  • 批准号:
    1900955
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    RGPIN-2018-04239
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Weakly Differentiable Mappings and Functions: Analysis, Geometry, and Topology
弱可微映射和函数:分析、几何和拓扑
  • 批准号:
    1800457
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Local Geometry of Real and Complex Analytic Mappings
实数和复数解析映射的局部几何
  • 批准号:
    355418-2013
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了