Flat Forms, Bi-Lipschitz Parametrizations, and Calculus on Singular Spaces

平面形式、Bi-Lipschitz 参数化和奇异空间上的微积分

基本信息

项目摘要

Singular (or nonsmooth) objects arise everywhere in mathematics. To mention just a few instances, they turn up in the following situations: as limits of smooth objects (spaces such as Riemannian manifolds, or smooth functions); as asymptotic "spheres at infinity" of finitely generated groups, objects that reflect the behavior of the groups at large scales; or in the fine-scale structure of sets, even in concrete and practical circumstances (irregular crystals, for instance, or other materials). The principal investigator studies questions that relate to singular objects and their geometry, and he does analysis on such objects. Specifically, he seeks to understand the extent to which the concepts of classical differential (first-order) analysis can be introduced into such spaces. For example, one would like to have a well-defined Sobolev space of weakly differentiable functions on certain singular spaces. It is also important to understand which potentially very singular spaces can be parametrized by "nice" spaces (say, by Euclidean spaces) via transformations that distort the basic metric structure only within fixed bounds. The principal investigator and his students are developing new tools for approaching this type of problem. Finally, the question of parametrization by a Euclidean space can be replaced with the requirement of embedability in some finite-dimensional Euclidean space. The methods that emerge from the project should clarify this problem as well.The proposed research relates to applications in two ways. First, singularities (or impurities) occur everywhere in nature, from the local microstructure of materials to the large-scale features of the universe. Understanding and dealing with such singularities is one of the central objectives of modern mathematics and science. The principal investigator has made contributions to the solution of this problem in cases where the singularities can be analyzed and then transformed, with minimal cost, to better behaved models. Second, although not directly related to the project, there are potential applications of the research to theoretical computer science, where large and complex data sets need to be transformed and stored in simpler form.
奇异(或非光滑)对象在数学中无处不在。仅举几个例子,它们出现在以下情况中:作为光滑对象的极限(空间,如黎曼流形,或光滑函数);作为渐近的“球在无穷大”的群生成的群体,对象,反映行为的群体在大尺度上;或在集合的精细尺度结构中,甚至在具体和实际的情况下(例如,不规则晶体或其他材料)。首席研究员研究与奇异物体及其几何形状有关的问题,并对这些物体进行分析。具体来说,他试图了解古典微分(一阶)分析的概念可以引入到这样的空间的程度。例如,人们希望在某些奇异空间上有一个定义良好的弱可微函数的Sobolev空间。同样重要的是要理解哪些潜在的非常奇异的空间可以通过仅在固定范围内扭曲基本度量结构的变换被“好”空间(例如,欧几里得空间)参数化。首席研究员和他的学生正在开发新的工具来解决这类问题。最后,欧氏空间的参数化问题可以用在某些有限维欧氏空间中的嵌入性要求来代替。从项目中出现的方法也应该澄清这个问题。首先,奇点(或杂质)在自然界中无处不在,从材料的局部微观结构到宇宙的大尺度特征。理解和处理这种奇点是现代数学和科学的中心目标之一。首席研究员作出了贡献,解决这个问题的情况下,可以分析的奇点,然后转换,以最小的成本,更好的表现模型。其次,虽然与项目没有直接关系,但该研究在理论计算机科学中有潜在的应用,其中大型复杂的数据集需要以更简单的形式进行转换和存储。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mario Bonk其他文献

On the second part of Hilbert's fifth problem
  • DOI:
    10.1007/bf02571809
  • 发表时间:
    1992-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
The addition formula for theta functions
  • DOI:
    10.1007/bf02215965
  • 发表时间:
    1997-02-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
Quasi-geodesic segments and Gromov hyperbolic spaces
  • DOI:
    10.1007/bf00181569
  • 发表时间:
    1996-10-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Mario Bonk
  • 通讯作者:
    Mario Bonk
Distortion theorems for locally univalent Bloch functions
  • DOI:
    10.1007/bf02787103
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Mario Bonk;David Minda;Hiroshi Yanagihara
  • 通讯作者:
    Hiroshi Yanagihara
Truncating Hyperbolic Densities

Mario Bonk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mario Bonk', 18)}}的其他基金

Expanding Thurston Maps and Fractal Geometry
扩展瑟斯顿图和分形几何
  • 批准号:
    2054987
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Dynamics and Quasiconformal Geometry
动力学和拟共形几何
  • 批准号:
    1808856
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis and geometry on non-smooth spaces
非光滑空间的分析和几何
  • 批准号:
    1506099
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RTG Analysis
RTG分析
  • 批准号:
    1344970
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal geometry of fractals
分形的拟共形几何
  • 批准号:
    1162471
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings in Geometry and Analysis
几何和分析中的拟共形映射
  • 批准号:
    1058772
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Flat Forms, Bi-Lipschitz Parametrizations, and Calculus on Singular Spaces
平面形式、Bi-Lipschitz 参数化和奇异空间上的微积分
  • 批准号:
    1058283
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quasiconformal Mappings in Geometry and Analysis
几何和分析中的拟共形映射
  • 批准号:
    0456940
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Nonsmooth Structures and Geometric Function Theory
非光滑结构与几何函数理论
  • 批准号:
    0353549
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
  • 批准号:
    0244421
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
  • 批准号:
    2349888
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347095
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347097
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
  • 批准号:
    2401353
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
  • 批准号:
    2401548
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
  • 批准号:
    2401444
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
  • 批准号:
    23K09279
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了