Topological Invariants and Singularities in Birational Geometry

双有理几何中的拓扑不变量和奇点

基本信息

项目摘要

The proposed research is in the general field of algebraic geometry, and primarily focuses on the problem of extension of topological invariants from manifolds to singular varieties and on problems in birational geometry of higher dimensional varieties. The principal techniques involved in this research are those coming from the theories of motivic integration and singularities of pairs. First, de Fernex proposes to further develop the theory of motivic integration, and to extend the results of a recent article on stringy Chern classes of singular varieties that he coauthored with Lupercio, Nevins and Uribe. Portion of this project stems from a nice interpretation of this results in the context of Deligne-Mumford stacks. Another portion of this project addresses the formulation of a theory of motivic integration involving derived categories and perverse sheaves; one of the aims in mind is the unification of the theories of stringy Chern classes and elliptic genera of singular varieties. A second collection of projects addresses the study of the birational geometry of Fano varieties and Mori fiber spaces, and particular attention is devoted to questions regarding nonrationality and birational rigidity of these varieties. Two more projects are proposed by de Fernex. One of these deals with a characterization of ampleness of line bundles via asymptotic cohomological vanishings, and is joint work with K\"uronya and Lazarsfeld. The other project addresses the question of extendibility, to a given ambient variety, of rational fibrations defined on subvarieties with ample normal bundle; this is in collaboration with Beltrametti and Lanteri.The first main project proposed here is based on a fundamental theorem in algebraic geometry, Hironaka's ``resolution of singularities'', which in its simplest form states that everysingular complex algebraic variety can be modified into a manifold without altering the locus where it is already nonsingular. The fact that associated to any singular variety there exists anonsingular one which looks ``almost the same'' suggests the idea that one should be able to extend topological invariants from manifolds to singular varieties by just looking at the varieties after resolving their singularities. However the resolution of singularities is typically not unique, so one needs to proceed cautiously; it is at this point that motivic integration comes into play: essentially, it is the technical tool used here to ensure that things, if defined suitably, do not depend on thechosen resolution. Hironaka's theorem is also crucial in the study of the birational properties of algebraic varieties and, in particular, it is used in the part of the proposed research dealing with questions concerning their nonrationality and birational rigidity. Modern techniques, based on a delicate analysis of singularities through their resolutions and accurate quantitative estimates of their nastiness, are here employed to address these questions, some of which are in fact quite classical and still open.
所提出的研究是在一般的代数几何领域,主要集中在拓扑不变量从流形到奇异簇的扩张问题和高维簇的双曲面几何问题。本研究涉及的主要技术来自于动机整合理论和配对奇点理论。首先,de Fernex建议进一步发展动机整合理论,并推广他与Lupercio、Nigins和Uribe共同撰写的最近一篇关于奇异变种的Stry Chen类的文章的结果。这个项目的一部分源于在Deligne-Mumford堆栈的背景下对这一结果的良好解释。这个项目的另一个部分解决了一个涉及派生范畴和倒序范畴的理据整合理论的形成;其中一个目标是统一弦陈类和奇异变元的椭圆属的理论。第二组项目涉及Fano簇和Mori纤维空间的双射几何的研究,并特别关注关于这些簇的非理性和双射刚性的问题。De Fernex还提出了另外两个项目。其中之一是利用渐近上同调零化刻画线丛的幅值,并与K‘uronya和Lazarsfeld共同工作。另一个项目解决了定义在具有充足法丛的子簇上的有理原纤化对给定环境簇的可扩性问题;这是与Beltrametti和Lanteri合作的。这里提出的第一个主要项目是基于代数几何中的一个基本定理,Hironaka的“奇点分解”,该定理以其最简单的形式说明,每个奇异复代数簇都可以被修改为流形,而不改变它已经是非奇异的轨迹。与任何奇异簇相关联的存在一个看起来“几乎相同”的非奇异簇的事实表明,人们应该能够将拓扑不变量从流形扩展到奇异簇,只需在解决其奇异性之后观察簇即可。然而,奇点的解决通常不是唯一的,所以人们需要谨慎行事;正是在这一点上,理据整合发挥了作用:本质上,它是这里使用的技术工具,以确保如果定义适当,事情不依赖于所选的解决方案。Hironaka定理在研究代数簇的二元性中也是至关重要的,特别是它被用在拟议的研究中,该部分涉及到关于其非理性和二元性的问题。现代技术,基于对奇点的精细分析,通过它们的分辨率和对它们肮脏程度的准确定量估计,在这里被用来解决这些问题,其中一些实际上是相当经典的,仍然是开放的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tommaso de Fernex其他文献

Divisorial valuations viaarcs
通过arcs进行除数估值
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tommaso de Fernex;Lawrence Ein and Shihoko Ishii
  • 通讯作者:
    Lawrence Ein and Shihoko Ishii
On planar Cremona maps of prime order
在素数平面克雷莫纳地图上
  • DOI:
    10.1017/s0027763000008795
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Tommaso de Fernex
  • 通讯作者:
    Tommaso de Fernex
行列式イデアルとその仲間たちの低次のシジジ
行列式理想的低阶 syjiji 及其同伴
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tommaso de Fernex;Roi Docampo;Shunsuke Takagi and Kevin Tucker;橋本光靖
  • 通讯作者:
    橋本光靖
Birationally rigid hypersurfaces
  • DOI:
    10.1007/s00222-012-0417-0
  • 发表时间:
    2012-08
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Tommaso de Fernex
  • 通讯作者:
    Tommaso de Fernex
Grothendieck–Lefschetz for ample subvarieties
  • DOI:
    10.1007/s00209-020-02693-4
  • 发表时间:
    2021-01-18
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Tommaso de Fernex;Chung Ching Lau
  • 通讯作者:
    Chung Ching Lau

Tommaso de Fernex的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tommaso de Fernex', 18)}}的其他基金

Arc Spaces, Singularities, and Motivic Integration
弧空间、奇点和动机整合
  • 批准号:
    2001254
  • 财政年份:
    2020
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Algebraic Varieties and Valuation Theory
代数簇和估价理论
  • 批准号:
    1700769
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Arcs, Valuations, and Multiplier Ideals on Algebraic Varieties
代数簇上的弧线、估值和乘数理想
  • 批准号:
    1402907
  • 财政年份:
    2014
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative research: Birational geometry and singularities in zero and positive characteristic
FRG:合作研究:双有理几何以及零和正特征中的奇点
  • 批准号:
    1265285
  • 财政年份:
    2013
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Continuing Grant
CAREER: Singularities in the Minimal Model Program and Birational Geometry
职业:最小模型程序和双有理几何中的奇点
  • 批准号:
    0847059
  • 财政年份:
    2009
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Continuing Grant
Topological Invariants and Singularities in Birational Geometry
双有理几何中的拓扑不变量和奇点
  • 批准号:
    0548325
  • 财政年份:
    2005
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant

相似海外基金

D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
A study of invariants of singularities in birational geometry via arc spaces
基于弧空间的双有理几何奇点不变量研究
  • 批准号:
    23K12958
  • 财政年份:
    2023
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
  • 批准号:
    2302475
  • 财政年份:
    2023
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Continuing Grant
Topological types and analytic invariants of complex surface singularities
复杂表面奇点的拓扑类型和解析不变量
  • 批准号:
    17K05216
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic invariants of singularities
奇点的代数不变量
  • 批准号:
    DP170102328
  • 财政年份:
    2017
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Discovery Projects
Studies on invariants of fibrations of curves and multidimensional continued fractions related to singularities
曲线纤维振动不变量和与奇点相关的多维连续分数的研究
  • 批准号:
    16K05104
  • 财政年份:
    2016
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
  • 批准号:
    1303077
  • 财政年份:
    2013
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
  • 批准号:
    1419448
  • 财政年份:
    2013
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Program on Motivic Invariants and Singularities
动机不变量和奇点计划
  • 批准号:
    1251553
  • 财政年份:
    2013
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Invariants of Singularities with Group Actions
群动作的奇点不变量
  • 批准号:
    233308117
  • 财政年份:
    2013
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了