Frobenius singularities and related invariants

弗罗贝尼乌斯奇点和相关不变量

基本信息

  • 批准号:
    1419448
  • 负责人:
  • 金额:
    $ 14.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-16 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Singularities and numerical invariants defined via the Frobenius endomorphism are an important part of the study of Commutative Algebra and Algebraic Geometry in positive characteristic. To that end, the program proposed by the PI will focus on the F-signature and other related so-called F-invariants, including Hilbert-Kunz multiplicity and test ideals. Central to the investigations of the PI is the interaction with geometric methods in characteristic zero stemming from complex algebraic geometry. One of the main objectives of the program is to better describe the geometry and broader connections of F-signature, as well as its many generalizations. The PI aims to approach various problems related to a number of long standing open questions in the field, including the equivalence of weak versus strong F-regularity and the direct summand conjecture. Furthermore, the PI plans to build upon recent work describing test ideals via regular alterations in exploring the local and global geometry of algebraic varieties in positive characteristic.Commutative Algebra and Algebraic Geometry are among the oldest and yet most active disciplines in mathematics. The fields have strong ties to such diverse areas as complex analysis, topology, and number theory, and are used in a wide variety of applied settings. Applications range from error-correcting codes in computer science and genomics to control theory and modeling in engineering. These fields seek to understand geometric objects (algebraic varieties) given locally as the solutions to polynomial equations. For instance, a plane curve is the zero set of a polynomial in two variables (such as the cusp y^2 = x^3). The richness and simplicity of polynomial equations make algebraic varieties fascinating objects of study. The particular questions the PI proposes to study will hopefully lead to a deeper understanding of the varieties and singularities in positive characteristic, i.e. over number systems having the property that a prime number vanishes. In particular, these systems include the finite fields at the heart of essentially all electronic computation.
由Frobenius自同态定义的奇点和数值不变量是正特征交换代数和代数几何研究的重要内容。 为此,PI提出的计划将专注于F签名和其他相关的所谓F不变量,包括希尔伯特-昆兹多重性和测试理想。中央调查的PI是互动的几何方法在特征零源于复杂的代数几何。该计划的主要目标之一是更好地描述F签名的几何形状和更广泛的连接,以及它的许多推广。 PI旨在解决与该领域中一些长期存在的开放问题相关的各种问题,包括弱与强F-正则性的等价性和直接和项猜想。 此外,PI计划建立在最近的工作描述测试理想,通过定期更改在探索局部和全局几何的代数簇的积极characteristic.Commutative代数和代数几何是最古老的,但最活跃的学科在数学。这些领域与复杂分析,拓扑学和数论等不同领域有着密切的联系,并用于各种各样的应用环境。应用范围从计算机科学和基因组学中的纠错码到工程中的控制理论和建模。 这些领域寻求理解几何对象(代数簇)局部给定的多项式方程的解决方案。例如,平面曲线是二元多项式的零点集(如尖点y^2 = x^3)。多项式方程的丰富性和简单性使代数簇成为令人着迷的研究对象。 PI建议研究的特定问题将有望导致对正特征中的多样性和奇异性的更深入理解,即具有素数消失属性的数系统。 特别地,这些系统包括基本上所有电子计算的核心的有限域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Tucker其他文献

Étale Fundamental Groups of Strongly $oldsymbol{F}$-Regular Schemes
强$oldsymbol{F}$-正则方案的Étale基本组
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Bhatt;Javier Carvajal;Patrick Graf;Karl Schwede;Kevin Tucker
  • 通讯作者:
    Kevin Tucker
Jumping numbers on algebraic surfaces with rational singularities
具有有理奇点的代数曲面上的跳跃数
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Tucker
  • 通讯作者:
    Kevin Tucker
On $F$-pure inversion of adjunction
关于$F$-附加的纯倒置
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas Polstra;Austyn Simpson;Kevin Tucker
  • 通讯作者:
    Kevin Tucker
Progress in Commutative Algebra 2 : Closures, Finiteness and Factorization
交换代数进展 2:闭包、有限性和因式分解
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    U. Krause;Kevin Tucker;J. Coykendall;Sean Sather;Christopher A. Francisco;Christina Eubanks;Florian Enescu;Karl Schwede;L. Klingler;Ela Celikbas;Sean Sather;Laura Sheppardson;B. Olberding;Jason G. Boynton;J. Watkins;R. Schwarz;Neil Epstein;S. Chapman;J. Vassilev;Sandra Spiroff;Sarah Glaz
  • 通讯作者:
    Sarah Glaz
Bertini Theorems for $F$-signature
$F$ 签名的贝尔蒂尼定理
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Javier Carvajal;Karl Schwede;Kevin Tucker
  • 通讯作者:
    Kevin Tucker

Kevin Tucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Tucker', 18)}}的其他基金

Collaborative Research: REU Site: Water resources and quality in the Riviera Maya, Mexico
合作研究:REU 站点:墨西哥里维埃拉玛雅的水资源和质量
  • 批准号:
    2244454
  • 财政年份:
    2023
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Singularities in Positive and Mixed Characteristic Commutative Algebra
正和混合特征交换代数中的奇点
  • 批准号:
    2200716
  • 财政年份:
    2022
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
  • 批准号:
    2006070
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Computing and Interpreting Frobenius Invariants
计算和解释弗罗贝尼乌斯不变量
  • 批准号:
    1602070
  • 财政年份:
    2016
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
  • 批准号:
    1303077
  • 财政年份:
    2013
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004344
  • 财政年份:
    2010
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Fellowship Award

相似海外基金

Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Resolution of Singularities, Valuation Theory and Related Topics
奇点的解决、估值理论及相关主题
  • 批准号:
    2002403
  • 财政年份:
    2020
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
  • 批准号:
    1907977
  • 财政年份:
    2019
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Differential Equations with singularities on free divisors and related Geometry
自由除数上具有奇点的微分方程及相关几何
  • 批准号:
    17K05269
  • 财政年份:
    2017
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on invariants of fibrations of curves and multidimensional continued fractions related to singularities
曲线纤维振动不变量和与奇点相关的多维连续分数的研究
  • 批准号:
    16K05104
  • 财政年份:
    2016
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Frobenius singularities and related invariants
弗罗贝尼乌斯奇点和相关不变量
  • 批准号:
    1303077
  • 财政年份:
    2013
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Research of normal surface singularities related to degeneration families of compact Riemann surfaces.
与紧致黎曼曲面退化族相关的法向曲面奇点研究。
  • 批准号:
    25400064
  • 财政年份:
    2013
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in analysis related to resolution of singularities
与奇点解决相关的分析主题
  • 批准号:
    1001070
  • 财政年份:
    2010
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Standard Grant
Singularities and balancing conditions on the theory of minimal surfaces and related geometric variational problems
最小曲面理论及相关几何变分问题的奇异性和平衡条件
  • 批准号:
    22540232
  • 财政年份:
    2010
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems related to the infinity Laplacian operator, the weak KAM theory and singularities of solutions of Monge-Ampere equations
无穷大拉普拉斯算子、弱KAM理论和Monge-Ampere方程解的奇点相关问题
  • 批准号:
    0901460
  • 财政年份:
    2009
  • 资助金额:
    $ 14.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了