Invariants of Singularities with Group Actions

群动作的奇点不变量

基本信息

项目摘要

Indices of vector fields, in particular on singular (real or complex) varieties, have been subject to intensive investigations. The applicant and S.M.Gusein-Zade also contributed to this research. In particular, they suggested considering also indices of 1-forms and of collections of 1-forms or vector fields on singular varieties. The applicant and Gusein-Zade have also studied other invariants like Poincaré series and monodromy zeta functions of complex singularities. In joint work of the applicant with A.Takahashi and later with Gusein-Zade, it turned out that it is important to study singularities together with their groups of symmetries to get among other things a better understanding of duality phenomena. Therefore the main objective of this project is to explore these invariants in the presence of the action of a finite group on the variety. This means to some extent pioneering work. It is planned to study both equivariant and orbifold analogues of the notions and statements. One of the aims is also to apply the results to orbifold Landau-Ginzburg models.
指数的向量场,特别是奇异(真实的或复杂的)品种,已受到深入的调查。申请人和S.M.Gusein-Zade也为这项研究做出了贡献。特别是,他们建议也考虑指数的1-形式和集合的1-形式或向量场的奇异品种。申请人和Gusein-Zade还研究了其他不变量,如庞加莱级数和复奇点的单值zeta函数。在申请人与A.Takahashi以及后来与Gusein-Zade的联合工作中,事实证明,研究奇点及其对称群对于更好地理解对偶现象是很重要的。因此,这个项目的主要目标是探索这些不变量在有限群的作用下的多样性。这在某种程度上是一种开拓性的工作。计划研究这些概念和陈述的等变和轨道类似物。的目的之一也是将结果应用到orbifold Landau-Ginzburg模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfgang Ebeling其他文献

Professor Dr. Wolfgang Ebeling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfgang Ebeling', 18)}}的其他基金

Homological Mirror Symmetry for Singularities
奇点的同调镜像对称
  • 批准号:
    123657947
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mirrorsymmetrie von K3-Flächen und Indizes von Vektorfeldern
K3 表面的镜像对称性和矢量场指数
  • 批准号:
    5246380
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Orbifold concepts in equivariant singularity theory
等变奇点理论中的轨道概念
  • 批准号:
    346364045
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Conference: Resolution of Singularities, Valuation Theory and Related Topics
会议:奇点的解决、估值理论及相关主题
  • 批准号:
    2422557
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
  • 批准号:
    DP240101934
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Conference: Singularities in Ann Arbor
会议:安娜堡的奇点
  • 批准号:
    2401041
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Stable Polynomials, Rational Singularities, and Operator Theory
稳定多项式、有理奇点和算子理论
  • 批准号:
    2247702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
  • 批准号:
    2301463
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A study of hypersurface singularities
超曲面奇点的研究
  • 批准号:
    2302685
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interaction of singularities and number theory
奇点与数论的相互作用
  • 批准号:
    23H01070
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了