Painleve Equations
潘勒夫方程
基本信息
- 批准号:0457291
- 负责人:
- 金额:$ 9.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTThe purpose of this project is to study a number of fundamental problems for the Painleve differential equations. These equations are second order nonlinear differential equations whose solutions do not have so-called movable singularities and cannot be expressed in terms of elementary or special functions. Their importance arises from the connections of the Painleve property to integrability theory, as well as from the numerous applications of the solutions, the Painleve transcendents. In this project, the principal investigator will study the following aspects of Painleve-related analysis: order of growth of single-valued meromorphic solutions; value distribution and branching of solutions to Painleve equations; andPainleve-type equations which admit movable branch points but only those whose multiplicity is bounded by a preassigned constant. Work performed under this proposal will lead to a greater understanding of and concrete results for this class of differential equations.Painleve equations are of great importance in pure and applied mathematics as well as inthe applications of mathematics to other sciences and to engineering. Within mathematics,Painleve equations are being applied in differential geometry, random matrix models, and integrability. The following are examples of areas of current activity outside mathematics in which Painleve equations have been found useful and have arisen in a natural way: the Ising model in physics, statistical mechanics in elasticity, correlation functions in an antiferromagnet model, quantum field theory and topological field theory,general relativity and cosmology, supersymmetry gauge theories in physics,resonant oscillations in shallow water, Hele-Shaw problems in viscous fluids,plasma physics, superconductivity, nonlinear optics and fiber optics,polymers, polyelectrolytes, and colloids. This list alone provides a clear indication of the empowering impact of mathematics in science and engineering, and of the value that theoretical understanding and precise problem solving in mathematics can contribute to modeling and theory building in other sciences. This project will provide additional knowledge and methods to this area of wide applicability.
本项目的目的是研究Painleve微分方程的一些基本问题。这些方程是二阶非线性微分方程,其解不具有所谓的可动奇点,并且不能用初等或特殊函数表示。它们的重要性源于Painleve性质与可积性理论的联系,以及Painleve超越的解决方案的众多应用。 在这个项目中,主要研究者将研究以下方面的Painleve相关分析:单值亚纯解的增长顺序; Painleve方程解的值分布和分支;以及Painleve型方程,其中允许可移动的分支点,但只允许其多重性由一个预先指定的常数限制。根据这一建议进行的工作将导致更好地理解和具体的结果为这一类微分方程Painleve方程是非常重要的纯数学和应用数学以及在应用数学的其他科学和工程。 在数学中,Painleve方程被应用于微分几何,随机矩阵模型和可积性。以下是目前数学以外的活动领域的例子,其中Painleve方程已被发现是有用的,并已出现在一个自然的方式:物理学中的伊辛模型,弹性力学中的统计力学,反铁磁模型中的相关函数,量子场论和拓扑场论,广义相对论和宇宙学,物理学中的超对称规范理论,浅水中的共振振荡,粘性流体、等离子体物理、超导、非线性光学和纤维光学、聚合物、聚电解质和胶体中的黑尔-肖问题。仅这一列表就清楚地表明了数学在科学和工程中的强大影响,以及数学中的理论理解和精确解决问题可以有助于其他科学的建模和理论建设的价值。 该项目将为这一具有广泛适用性的领域提供更多的知识和方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aimo Hinkkanen其他文献
Asymptotic Values of Entire Functions of Infinite Order
- DOI:
10.1007/s40315-022-00464-2 - 发表时间:
2022-08-18 - 期刊:
- 影响因子:0.700
- 作者:
Aimo Hinkkanen;Joseph Miles - 通讯作者:
Joseph Miles
Rectangles and quasiconformal mappings
- DOI:
10.1007/bf01173930 - 发表时间:
1983-12-01 - 期刊:
- 影响因子:1.000
- 作者:
Aimo Hinkkanen - 通讯作者:
Aimo Hinkkanen
Walter K. Hayman FRS (1926–2020) A Biographical Sketch
- DOI:
10.1007/s40315-021-00422-4 - 发表时间:
2021-11-30 - 期刊:
- 影响因子:0.700
- 作者:
Tom Carroll;David Drasin;Aimo Hinkkanen;James K. Langley - 通讯作者:
James K. Langley
Dual Smale’s Mean Value Conjecture for $$n=7$$
- DOI:
10.1007/s00365-025-09709-4 - 发表时间:
2025-05-06 - 期刊:
- 影响因子:1.200
- 作者:
Aimo Hinkkanen;Ilgiz R. Kayumov;Diana M. Khammatova - 通讯作者:
Diana M. Khammatova
Maximum and Average Valence of Meromorphic Functions
- DOI:
10.1007/s40315-024-00533-8 - 发表时间:
2024-03-30 - 期刊:
- 影响因子:0.700
- 作者:
Aimo Hinkkanen;Joseph Miles - 通讯作者:
Joseph Miles
Aimo Hinkkanen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aimo Hinkkanen', 18)}}的其他基金
Mappings and Measures in Sub-Riemannian and Metric Spaces
亚黎曼空间和度量空间中的映射和测量
- 批准号:
1600650 - 财政年份:2016
- 资助金额:
$ 9.26万 - 项目类别:
Continuing Grant
Martingales and Painleve Equations
Martingales 和 Painleve 方程
- 批准号:
1068857 - 财政年份:2011
- 资助金额:
$ 9.26万 - 项目类别:
Continuing Grant
Martingales and Painleve Equations
Martingales 和 Painleve 方程
- 批准号:
0758226 - 财政年份:2008
- 资助金额:
$ 9.26万 - 项目类别:
Standard Grant
Covering Surfaces and Painleve Equations
覆盖曲面和 Painleve 方程
- 批准号:
9970281 - 财政年份:1999
- 资助金额:
$ 9.26万 - 项目类别:
Continuing Grant
Mathematical Sciences: Complex Dynamical Systems and Mobius Groups
数学科学:复杂动力系统和莫比乌斯群
- 批准号:
9400999 - 财政年份:1994
- 资助金额:
$ 9.26万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Complex Analysis
数学科学:复分析中的问题
- 批准号:
9107336 - 财政年份:1991
- 资助金额:
$ 9.26万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Complex Analysis
数学科学:复分析中的问题
- 批准号:
8903242 - 财政年份:1989
- 资助金额:
$ 9.26万 - 项目类别:
Standard Grant
相似海外基金
Extending the geometric theory of discrete Painleve equations - singularities, entropy and integrability
扩展离散 Painleve 方程的几何理论 - 奇点、熵和可积性
- 批准号:
22KF0073 - 财政年份:2023
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nonlinear Stokes phenomenon in Painleve; equations and BPS structure
Painleve 中的非线性斯托克斯现象;
- 批准号:
23K17654 - 财政年份:2023
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research of integrable systems around the Painleve equations
围绕Painleve方程的可积系统研究
- 批准号:
18K03323 - 财政年份:2018
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Painleve equations: analytical properties and numerical computation
Painleve 方程:分析特性和数值计算
- 批准号:
EP/P026532/1 - 财政年份:2017
- 资助金额:
$ 9.26万 - 项目类别:
Research Grant
CBMS Conference: Discrete Painleve Equations
CBMS 会议:离散 Painleve 方程
- 批准号:
1543860 - 财政年份:2016
- 资助金额:
$ 9.26万 - 项目类别:
Standard Grant
Study of Painleve equations by the field theory
Painleve方程的场论研究
- 批准号:
16K13765 - 财政年份:2016
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Hypergeometric functions and Painleve equations
超几何函数和 Painleve 方程
- 批准号:
16K05165 - 财政年份:2016
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorics of special polynomials associated to certain solutions of Painleve equations
与 Painleve 方程的某些解相关的特殊多项式的组合
- 批准号:
15K13425 - 财政年份:2015
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research of integrable systems around the Painleve equations
围绕Painleve方程的可积系统研究
- 批准号:
15K04894 - 财政年份:2015
- 资助金额:
$ 9.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)