Galois Groups and Fundamental Groups
伽罗瓦群和基本群
基本信息
- 批准号:0500118
- 负责人:
- 金额:$ 10.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator studies Galois groups and fundamental groups in algebraic and arithmetic geometry. In particular, he studies generalizations of the conjectures of Shafarevich and Abhyankar on Galois groups over varieties; lifting problems for covers, from finite to mixed characteristic; and Galois extensions of the one-variable function field over the field of rational numbers. Goals include the development of Galois theory in higher dimensions, understanding good reduction of covers, and computing fields of moduli of covers. Achieving these goals would increase the understanding of the geometry of surfaces and the link between number theory and topology. Methods include formal patching, embedding problems, cohomology, birational transformations, and group theory.This project relates aspects of algebra and geometry in a way that makes it possible to achieve research results that could not be obtained using either of these two fields alone. The geometric spaces being studied can be defined algebraically using equations, and the project makes use of both the algebraic and geometric aspects of these spaces. A particular focus of the project concerns the symmetries of these spaces, which in turn correspond to symmetries involving the algebraic functions on these spaces. The project studies what types of symmetries can occur, which types of extensions of symmetry are possible, and what types of algebraic numbers are needed in order to obtain a space with a given type of symmetry.
首席研究员研究代数和算术几何中的伽罗瓦群和基本群。特别地,他研究了Shafarevich和Abhyankar猜想在簇上Galois群上的推广;覆盖的提升问题,从有限特征到混合特征;以及一元函数域在有理数域上的Galois扩张。目标包括高维伽罗瓦理论的发展,对覆盖的良好约化的理解,以及覆盖模的计算域。实现这些目标将增加对曲面几何的理解,以及数论和拓扑学之间的联系。方法包括形式补丁、嵌入问题、上同调、双态变换和群论。这个项目将代数和几何的各个方面联系在一起,使之有可能获得仅使用这两个领域中的任何一个都无法获得的研究结果。正在研究的几何空间可以用方程来代数定义,该项目利用了这些空间的代数和几何方面。该项目的一个特别焦点涉及这些空间的对称性,这些对称性反过来对应于涉及这些空间上的代数函数的对称性。该项目研究什么类型的对称可以发生,什么类型的对称扩展是可能的,以及为了获得具有给定类型的对称的空间需要什么类型的代数数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Harbater其他文献
Correction and addendum to “embedding problems with local conditions”
- DOI:
10.1007/s11856-007-0103-x - 发表时间:
2007-12-01 - 期刊:
- 影响因子:0.800
- 作者:
David Harbater - 通讯作者:
David Harbater
Embedding problems with local conditions
- DOI:
10.1007/bf02803526 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.800
- 作者:
David Harbater - 通讯作者:
David Harbater
Arithmetic discriminants and horizontal intersections
- DOI:
10.1007/bf01445235 - 发表时间:
1991-03-01 - 期刊:
- 影响因子:1.400
- 作者:
David Harbater - 通讯作者:
David Harbater
Permanence criteria for semi-free profinite groups
- DOI:
10.1007/s00208-010-0484-8 - 发表时间:
2010-02-09 - 期刊:
- 影响因子:1.400
- 作者:
Lior Bary-Soroker;Dan Haran;David Harbater - 通讯作者:
David Harbater
David Harbater的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Harbater', 18)}}的其他基金
Fundamental Groups and Absolute Galois Groups
基本群和绝对伽罗瓦群
- 批准号:
0200045 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Galois Covers of Curves
数学科学:曲线的伽罗瓦覆盖
- 批准号:
9400836 - 财政年份:1994
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic Algebraic Geometry
数学科学:算术代数几何
- 批准号:
8514835 - 财政年份:1986
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Power Series
数学科学:算术幂级数
- 批准号:
8302068 - 财政年份:1983
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8211317 - 财政年份:1982
- 资助金额:
$ 10.5万 - 项目类别:
Fellowship Award
Deformation Theory and the Algebraic Fundamental Group
变形理论和代数基本群
- 批准号:
7824169 - 财政年份:1979
- 资助金额:
$ 10.5万 - 项目类别:
Standard Grant
相似海外基金
Beyond Grothendieck's conjecture on Galois groups and arithmetic fundamental groups
超越格洛腾迪克关于伽罗瓦群和算术基本群的猜想
- 批准号:
EP/T031816/1 - 财政年份:2021
- 资助金额:
$ 10.5万 - 项目类别:
Research Grant
Galois Actions on Fundamental Groups and Number Theory
基本群和数论的伽罗瓦行动
- 批准号:
20J11018 - 财政年份:2020
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Cultivation of computational approaches in constructive Galois theory and arithmetic fundamental groups
构造性伽罗瓦理论和算术基本群计算方法的培养
- 批准号:
16K13745 - 财政年份:2016
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on arithmetic invariants arising from mutual interactions between Galois groups and fundamental groupoids
伽罗瓦群与基本群胚相互作用产生的算术不变量的研究
- 批准号:
26287006 - 财政年份:2014
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rational points, Galois representations, and fundamental groups
有理点、伽罗瓦表示和基本群
- 批准号:
0401616 - 财政年份:2004
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Fundamental Groups and Absolute Galois Groups
基本群和绝对伽罗瓦群
- 批准号:
0200045 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Continuing Grant
Galois groups and fundamental groups in anabelian geometry
阿贝尔几何中的伽罗瓦群和基本群
- 批准号:
14340017 - 财政年份:2002
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exterior Galois representations in fundamental groups and associated arithmetic phenomena
基本群和相关算术现象中的外伽罗瓦表示
- 批准号:
10640034 - 财政年份:1998
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois groups and fundamental groups
伽罗瓦群和基本群
- 批准号:
09440011 - 财政年份:1997
- 资助金额:
$ 10.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)