Patching in algebra

代数修补

基本信息

  • 批准号:
    0901164
  • 负责人:
  • 金额:
    $ 15.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

This proposal concerns the development and use of patching methods in algebra. The Principal Investigator plans to use patching methods to obtain new results in the theories of quadratic forms, central simple algebras, division algebras, differential algebra, and Galois theory, building on his recent results in those directions using patching. Concerning quadratic forms, he will work to generalize his recent results on dimensions of anisotropic forms defined over function fields, to cases where either the function field or the base field is of higher dimension. He will also work to generalize his recent results on the period-index problem for central simple algebras to the higher dimensional case. These will involve the study and use of local-global principles. In the area of division algebras, he will work to characterize the division algebra split embedding problems that have solutions, and to extend this and his previous work in this area to the cases of mixed and finite characteristics. In differential algebra, he will work to solve split embedding problems for differential Galois groups in characteristic zero, initially over complete discrete valuation fields, and afterwards over algebraically closed fields and other large fields. He will also study the structure of absolute Galois groups of fields using patching, while drawing on his recent patching results on profinite groups that are close to being free. In order to carry out these activities, he will work to extend his patching methods further, building on his recent development of patching over fields, and attempting to extend those techniques to higher dimensional fields.Patching methods originated in geometry and analysis, where they have long been used to study spaces by examining them locally and seeing how the parts fit together. The introduction of this approach into algebra is more recent, but has made it possible to solve algebraic problems that had seemed intractable. The Principal Investigator had introduced this method into Galois theory, which studies which polynomial equations are solvable by examining the symmetries of the roots. This led to solutions of the inverse Galois problem over various classes of fields. The work planned in this proposal will extend recent work of the Principal Investigator in carrying over patching methods to other parts of algebra, and solving problems there. He has recently begun carrying out this program, obtaining results on quadratic forms, division algebras, and other topics, and the proposed work will go beyond this, extending the applicability of the patching method and leading to results in several areas of algebra that will go beyond what could previously be obtained using other methods. The activities of this proposal will also have broader impacts in terms of education and training, through the participation of graduate students in seminars and other activities related to this proposal. The proposed activities also involve mentoring and working jointly with junior mathematicians and members of underrepresented groups, as well as enhancing the research infrastructure though collaborations and workshops.
这个建议涉及代数中修补方法的发展和使用。首席研究员计划使用修补方法来获得新的成果,在理论的二次形式,中央简单代数,司代数,微分代数和伽罗瓦理论,建立在他最近的成果,在这些方向使用修补。 关于二次形式,他将努力推广他最近的结果对维度的各向异性形式定义的功能领域,案件的功能领域或基地领域是更高的层面。 他还将致力于推广他最近的结果期间指数问题的中心简单代数高维的情况下。这将涉及研究和使用地方-全球原则。 在该地区的司代数,他将致力于刻画司代数分裂嵌入问题的解决方案,并延长这一点和他以前的工作在这一领域的情况下,混合和有限的特点。 在微分代数,他将致力于解决分裂嵌入问题的微分伽罗瓦群的特征零,最初在完整的离散估值领域,后来在代数封闭领域和其他大型领域。 他还将研究结构的绝对伽罗瓦集团的领域使用修补,而借鉴他最近修补结果profinite集团是接近免费的。 为了开展这些活动,他将努力进一步扩展他的修补方法,以他最近在领域修补方面的发展为基础,并试图将这些技术扩展到更高维度的领域。修补方法起源于几何和分析,长期以来,它们一直被用来通过局部检查空间并观察各部分如何组合在一起来研究空间。 将这种方法引入代数是最近的事,但它使人们有可能解决代数问题,似乎棘手。首席研究员将这种方法引入了伽罗瓦理论,该理论通过检查根的对称性来研究哪些多项式方程可解。 这导致了各种领域的逆伽罗瓦问题的解决方案。 本提案中计划的工作将扩展首席研究员最近的工作,将修补方法转移到代数的其他部分,并解决那里的问题。 他最近开始执行这一计划,获得的结果二次形式,司代数,和其他主题,并提出的工作将超越这一点,扩大适用性的修补方法,并导致结果在几个领域的代数,将超越什么以前可以获得使用其他方法。 通过研究生参加与本提案有关的研讨会和其他活动,本提案的活动还将在教育和培训方面产生更广泛的影响。 拟议的活动还包括指导和与初级数学家和代表性不足群体的成员共同工作,以及通过合作和讲习班加强研究基础设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Harbater其他文献

Correction and addendum to “embedding problems with local conditions”
  • DOI:
    10.1007/s11856-007-0103-x
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    David Harbater
  • 通讯作者:
    David Harbater
Embedding problems with local conditions
  • DOI:
    10.1007/bf02803526
  • 发表时间:
    2000-12-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    David Harbater
  • 通讯作者:
    David Harbater
Arithmetic discriminants and horizontal intersections
  • DOI:
    10.1007/bf01445235
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Harbater
  • 通讯作者:
    David Harbater
Permanence criteria for semi-free profinite groups
  • DOI:
    10.1007/s00208-010-0484-8
  • 发表时间:
    2010-02-09
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Lior Bary-Soroker;Dan Haran;David Harbater
  • 通讯作者:
    David Harbater

David Harbater的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Harbater', 18)}}的其他基金

Galois Groups and Fundamental Groups
伽罗瓦群和基本群
  • 批准号:
    0500118
  • 财政年份:
    2005
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Fundamental Groups and Absolute Galois Groups
基本群和绝对伽罗瓦群
  • 批准号:
    0200045
  • 财政年份:
    2002
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
Galois Groups and Fundamental Groups
伽罗瓦群和基本群
  • 批准号:
    9970481
  • 财政年份:
    1999
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Galois Covers of Curves
数学科学:曲线的伽罗瓦覆盖
  • 批准号:
    9400836
  • 财政年份:
    1994
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Arithmetic Algebraic Geometry
数学科学:算术代数几何
  • 批准号:
    8514835
  • 财政年份:
    1986
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arithmetic Power Series
数学科学:算术幂级数
  • 批准号:
    8302068
  • 财政年份:
    1983
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8211317
  • 财政年份:
    1982
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Fellowship Award
Deformation Theory and the Algebraic Fundamental Group
变形理论和代数基本群
  • 批准号:
    7824169
  • 财政年份:
    1979
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Algebra and Algebraic Geometry
代数和代数几何
  • 批准号:
    7802322
  • 财政年份:
    1978
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant

相似国自然基金

李代数的权表示
  • 批准号:
    10371120
  • 批准年份:
    2003
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 15.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了