Combinatorics, Algebra and Topology of simplicial complexes
单纯复形的组合学、代数和拓扑
基本信息
- 批准号:0500748
- 负责人:
- 金额:$ 9.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal describes four projects aimed to deepenour understanding of the combinatorics, algebra and topology ofsimplicial complexes through the study of their size (or face numbers).This includes work on the Upper Bound Theorem that has its origins inthe theory of convex polytopes, and the study of the face numbers andBetti numbers of balanced simplicial complexes, flag complexes, andcomplexes with symmetry.Combinatorics is an active field of mathematics today that has closeconnections with many other subjects such asalgebra, geometry and topology, optimization, statistics,etc. inside mathematics, and computer science, high-energy physics, andbiology outside. Continuing exploring and developing new cross-pollinations and interactions between combinatorics and other areas ofmathematics is a central intellectual pursuit of this project.Specifically, this proposal concerns simplicial complexes --- finiteobjects that provide the easiest way to represent multi-dimensional shapesin a computer through their triangulations --- and various bounds on thesizes of such complexes. The minimal size of a triangulation has taken onpractical significance, since it directly affects the complexity ofcomputations involving a particular shape.
这项建议描述了四个项目,旨在通过研究单纯形复形的大小(或面数)来加深对它们的组合学、代数和拓扑学的理解。这包括起源于凸多面体理论的上限定理的工作,以及平衡单纯形复形、旗形复形和对称复形的面数和Betti数的研究。组合学是当今数学的一个活跃领域,它与数学内部的许多其他学科,如代数、几何和拓扑、最优化、统计学等,以及计算机科学、高能物理和生物学有着密切的联系。继续探索和发展组合学和其他数学领域之间的新的交叉授粉和相互作用是这个项目的核心智力追求。具体地说,这个建议涉及单纯复形-有限对象,通过它们的三角剖分提供在计算机中表示多维形状的最简单方式-以及对这样的复形的大小的各种界限。三角剖分的最小尺寸具有实际意义,因为它直接影响涉及特定形状的计算的复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabella Novik其他文献
Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures
- DOI:
10.1007/s00454-024-00642-0 - 发表时间:
2024-04-12 - 期刊:
- 影响因子:0.600
- 作者:
Isabella Novik;Hailun Zheng - 通讯作者:
Hailun Zheng
Explicit Constructions of Centrally Symmetric $$k$$ -Neighborly Polytopes and Large Strictly Antipodal Sets
- DOI:
10.1007/s00454-013-9495-z - 发表时间:
2013-03-12 - 期刊:
- 影响因子:0.600
- 作者:
Alexander Barvinok;Seung Jin Lee;Isabella Novik - 通讯作者:
Isabella Novik
Centrally symmetric polytopes with many faces
- DOI:
10.1007/s11856-012-0107-z - 发表时间:
2012-09-20 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Barvinok;Seung Jin Lee;Isabella Novik - 通讯作者:
Isabella Novik
Isabella Novik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabella Novik', 18)}}的其他基金
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant
Geometry, Algebra, and Topology of Face Numbers
面数的几何、代数和拓扑
- 批准号:
1953815 - 财政年份:2020
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Topology of Stanley-Reisner Rings
Stanley-Reisner 环的组合学、代数和拓扑
- 批准号:
1664865 - 财政年份:2017
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant
Combinatorics, algebra, and geometry of face numbers
面数的组合学、代数和几何
- 批准号:
1361423 - 财政年份:2014
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant
The Mathematics of Klee & Grunbaum: 100 Years in Seattle
克利的数学
- 批准号:
1009378 - 财政年份:2010
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
相似海外基金
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
FET: SMALL: Quantum algorithms and complexity for quantum algebra and topology
FET:小:量子算法以及量子代数和拓扑的复杂性
- 批准号:
2330130 - 财政年份:2024
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2314082 - 财政年份:2023
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2203785 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Research Grant
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
- 批准号:
559329-2021 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Standard Grant
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
- 批准号:
2223126 - 财政年份:2022
- 资助金额:
$ 9.85万 - 项目类别:
Continuing Grant