The Mathematics of Klee & Grunbaum: 100 Years in Seattle
克利的数学
基本信息
- 批准号:1009378
- 负责人:
- 金额:$ 1.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A constant theme in the research of Victor Klee and Branko Grunbaum has been the discovery and development of surprising and powerful connections between combinatorics and discrete geometry and other branches of mathematics. This conference is aimed to be both a retrospective on these developments and an educational opportunity for the younger generation who will be exposed to a survey of the wide-spread contributions of the honorees. A second important component of the conference will be three 1-2 hour long problem sessions spread through the three days that will discuss open problems arising from the work of Klee and Grunbaum.Victor Klee and Branko Grunbaum founded several branches of modern combinatorics and discrete geometry and spent their long careers (a total of 100 years between them) at the University of Washington in Seattle. Their contributions has also made an impact on several areas connected to mathematics such as optimization, computer science, statistics, and the life sciences. This conference is intended to be a world class celebration of the illustrious careers of these mathematical giants.
维克托克利和布兰科·格伦鲍姆的研究中一个不变的主题是发现和发展组合数学与离散几何和其他数学分支之间令人惊讶的强大联系。 这次会议的目的是回顾这些发展,并为年轻一代提供教育机会,他们将接触到获奖者广泛贡献的调查。会议的第二个重要组成部分将是三个1-2小时长的问题会议,通过三天的时间,将讨论开放的问题所产生的工作克利和格伦鲍姆。维克托克利和布兰科格伦鲍姆成立了几个分支的现代组合数学和离散几何和度过了漫长的职业生涯(共100年之间)在华盛顿大学在西雅图。 他们的贡献也影响了与数学有关的几个领域,如优化,计算机科学,统计学和生命科学。这次会议的目的是成为一个世界级的庆祝活动的杰出职业生涯的这些数学巨人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabella Novik其他文献
Affine Stresses: The Partition of Unity and Kalai’s Reconstruction Conjectures
- DOI:
10.1007/s00454-024-00642-0 - 发表时间:
2024-04-12 - 期刊:
- 影响因子:0.600
- 作者:
Isabella Novik;Hailun Zheng - 通讯作者:
Hailun Zheng
Explicit Constructions of Centrally Symmetric $$k$$ -Neighborly Polytopes and Large Strictly Antipodal Sets
- DOI:
10.1007/s00454-013-9495-z - 发表时间:
2013-03-12 - 期刊:
- 影响因子:0.600
- 作者:
Alexander Barvinok;Seung Jin Lee;Isabella Novik - 通讯作者:
Isabella Novik
Centrally symmetric polytopes with many faces
- DOI:
10.1007/s11856-012-0107-z - 发表时间:
2012-09-20 - 期刊:
- 影响因子:0.800
- 作者:
Alexander Barvinok;Seung Jin Lee;Isabella Novik - 通讯作者:
Isabella Novik
Isabella Novik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabella Novik', 18)}}的其他基金
Combinatorics, Algebra, and Geometry of Simplicial Complexes
单纯复形的组合学、代数和几何
- 批准号:
2246399 - 财政年份:2023
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
Geometry, Algebra, and Topology of Face Numbers
面数的几何、代数和拓扑
- 批准号:
1953815 - 财政年份:2020
- 资助金额:
$ 1.95万 - 项目类别:
Standard Grant
Combinatorics, Algebra, and Topology of Stanley-Reisner Rings
Stanley-Reisner 环的组合学、代数和拓扑
- 批准号:
1664865 - 财政年份:2017
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
Combinatorics, algebra, and geometry of face numbers
面数的组合学、代数和几何
- 批准号:
1361423 - 财政年份:2014
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
Combinatorics, Algebra and Topology of simplicial complexes
单纯复形的组合学、代数和拓扑
- 批准号:
0500748 - 财政年份:2005
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
相似海外基金
LTREB: Stability and resilience in the face of multiple interacting press and pulse disturbances of a changing world (Kenya Long-term Exclosure Experiment: KLEE)
LTREB:面对不断变化的世界的多重相互作用的压力和脉冲干扰时的稳定性和弹性(肯尼亚长期排除实验:KLEE)
- 批准号:
1931224 - 财政年份:2020
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
'To Make You See': The Concrete in Joseph Conrad and Paul Klee
“让你看到”:约瑟夫·康拉德和保罗·克利的具体
- 批准号:
19K00451 - 财政年份:2019
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LTREB RENEWAL: COLLABORATIVE RESEARCH: Scaling up and scaling out at the Kenya Long-term Exclosure Experiment (KLEE)
LTREB 更新:合作研究:肯尼亚长期排除实验 (KLEE) 的扩展和扩展
- 批准号:
1256004 - 财政年份:2013
- 资助金额:
$ 1.95万 - 项目类别:
Standard Grant
LTREB RENEWAL: COLLABORATIVE RESEARCH: Scaling up and scaling out at the Kenya Long-term Exclosure Experiment (KLEE)
LTREB 更新:合作研究:肯尼亚长期排除实验 (KLEE) 的扩展和扩展
- 批准号:
1256034 - 财政年份:2013
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
Paul Klee and experimental embryology
保罗·克利和实验胚胎学
- 批准号:
23520134 - 财政年份:2011
- 资助金额:
$ 1.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Klee sets for bregman and other distances
布雷格曼和其他距离的克利集
- 批准号:
383792-2009 - 财政年份:2009
- 资助金额:
$ 1.95万 - 项目类别:
University Undergraduate Student Research Awards
Klee sets with respect to bregman distances
克利集相对于布雷格曼距离
- 批准号:
377304-2009 - 财政年份:2009
- 资助金额:
$ 1.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
LTREB: KLEE- scaling up and out at the Kenya Long-term Exclosure Experiment
LTREB:KLEE - 肯尼亚长期排除实验的扩大和缩小
- 批准号:
0816453 - 财政年份:2008
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant
Chebyshev sets, klee sets, and bregman distances
切比雪夫集、克利集和布雷格曼距离
- 批准号:
368321-2008 - 财政年份:2008
- 资助金额:
$ 1.95万 - 项目类别:
University Undergraduate Student Research Awards
LTREB: KLEE (Kenya Long-term Exclosure Experiment): Pattern and Process in an African Savanna
LTREB:KLEE(肯尼亚长期排除实验):非洲稀树草原的模式和过程
- 批准号:
0316402 - 财政年份:2003
- 资助金额:
$ 1.95万 - 项目类别:
Continuing Grant