Fully Nonlinear Equations
完全非线性方程
基本信息
- 批准号:0500808
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fully Nonlinear EquationsProject AbstractYu YuanThis project focuses on the regularity and solvability of fully nonlinear equations. The first topic is to investigate Bernstein/Liouville problems for various equations. Here the aim is to prove that the only solutions of certain problems are certain very simple or "trivial" solutions. Another topic is to prove regularity results for the solutions of fully nonlinear second order elliptic equations in 3d domains and also for the Isaacs' equation of control theory. The project will also look at deriving necessary conditions for the local isometric imbedding problem for 2-dimensional Riemannian manifolds. The partial differential equations in the project arise not only in geometry but also in science and engineering. Results on these problems should have applications to stringtheory in modern physics, for nonlinear elasticity in mechanics, and for stochastic optimal control theory in engineering and economics.
全非线性方程项目摘要于元本项目主要研究全非线性方程的正则性和可解性。第一个课题是研究各种方程的Bernstein/Liouville问题。这里的目的是证明某些问题的唯一解是某些非常简单或“微不足道”的解。另一个课题是在三维域上证明完全非线性二阶椭圆方程解的正则性结果,以及控制理论中的Isaacs方程的正则性结果。该项目还将着眼于推导二维黎曼流形局部等距嵌入问题的必要条件。项目中的偏微分方程不仅出现在几何中,而且出现在科学和工程中。这些问题的结果在现代物理学中的弦理论、力学中的非线性弹性理论以及工程和经济学中的随机最优控制理论中都有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Yuan其他文献
Generation of Millimeter-Wave Ultra-Wideband Pulses Free of Strong Local Oscillation and Background
产生无强局部振荡和背景的毫米波超宽带脉冲
- DOI:
10.1109/lpt.2016.2594045 - 发表时间:
2016-11 - 期刊:
- 影响因子:2.6
- 作者:
Yu Yuan;Jiang Fan;Tang Haitao;Xu Lu;Liu Xiaolong;Dong Jianji;Zhang Xinliang - 通讯作者:
Zhang Xinliang
Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles
原位形成的 TiC0.3N0.7 颗粒增强 Si3N4 基陶瓷的温度驱动磨损行为
- DOI:
10.1111/jace.16283 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Liu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu Weimin - 通讯作者:
Liu Weimin
Highly fluorescent cotton fiber based on luminescent carbon nanoparticles via a two-step hydrothermal synthesis method
两步水热合成法基于发光碳纳米粒子的高荧光棉纤维
- DOI:
10.1007/s10570-017-1230-0 - 发表时间:
2017-03 - 期刊:
- 影响因子:5.7
- 作者:
Yu Yuan;Wang Jian;Wang Jidong;Li Jing;Zhu Yanan;Li Xiaoqiang;Song Xiaolei;Ge Mingqiao - 通讯作者:
Ge Mingqiao
Switchable Microwave Photonic Filter Between Low-Pass and High-Pass Responses
低通和高通响应之间可切换的微波光子滤波器
- DOI:
10.1109/jphot.2016.2602081 - 发表时间:
2016-08 - 期刊:
- 影响因子:2.4
- 作者:
Yu Yuan;Tang Haitao;Xu Lu;Liu Xiaolong;Jiang Fan;Dong Jianji;Zhang Xinliang - 通讯作者:
Zhang Xinliang
Associations of the PTEN -9C>G polymorphism with insulin sensitivity and central obesity in Chinese.
PTEN -9C>G 多态性与中国人胰岛素敏感性和中心性肥胖的关系。
- DOI:
10.1016/j.gene.2013.06.026 - 发表时间:
2013 - 期刊:
- 影响因子:3.5
- 作者:
Qiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. Tong - 通讯作者:
N. Tong
Yu Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Yuan', 18)}}的其他基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:
1800495 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
- 批准号:
1100966 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
0296153 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
- 批准号:
9970367 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
- 批准号:
RGPIN-2020-06756 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
- 批准号:
RGPIN-2020-06756 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
- 批准号:
DGECR-2020-00359 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
- 批准号:
RGPIN-2020-06756 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularity theory for viscosity solutions of fully nonlinear equations and its applications
全非线性方程粘度解的正则理论及其应用
- 批准号:
20H01817 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fully Nonlinear Geometric Partial Differential Equations
全非线性几何偏微分方程
- 批准号:
1809582 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:
1800495 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Variational theory for fully nonlinear elliptic equations
全非线性椭圆方程的变分理论
- 批准号:
DP170100929 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Projects
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
- 批准号:
1620086 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant