Fully nonlinear elliptic equations

全非线性椭圆方程

基本信息

  • 批准号:
    0758256
  • 负责人:
  • 金额:
    $ 17.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The principle investigator will continue his study of special Lagrangian equations, Isaacs equations, symmetric Hessian equations, and complex Monge-Ampere equations. The theory of a priori estimates and solvability for fully nonlinear uniformly elliptic equations (with the convexity condition in arbitrary dimensions and without the convexity hypothesis in dimension two) is well developed. The concrete equations just listed either do not satisfy the convexity condition or do not exhibit uniform ellipticity. Only preliminary attempts have been made to deal with such issues, mainly in the saddle case. Substantial advances have been achieved for the symmetric Hessian equations and the complex Monge-Ampere equations, yet there is still no Schauder or Calderon-Zygmund theory for these equations. This project seeks to remedy that state of affairs. Investigations into the aforementioned concrete equations will further our knowledge of two related mathematical fields, partial differential equations and differential geometry. Moreover, the project will also have impact on the areas where these equations arise. Special Lagrangian equations and complex Monge-Ampere equations provide the mathematical foundation for mirror symmetry in the string theory of modern physics, which is a unified way to describe our physical universe. Solutions to Isaacs equations lead to the optimal strategy for certain random processes, for example, in engineering and finance. Hessian equations are also closely related to nonlinear elasticity theory in mechanics, which studies the mechanisms whereby a material that is stretched returns to its original size and shape.
主要调查员将继续他的研究特殊拉格朗日方程,艾萨克方程,对称海森方程和复杂的蒙格-安培方程。完全非线性一致椭圆型方程(在任意维上满足凸性条件,在二维上不满足凸性假设)的先验估计和可解性理论已经得到了很好的发展。上面所列的具体方程要么不满足凸性条件,要么不具有一致椭圆性。只对处理这些问题作了初步尝试,主要是在saddle案中。对称Hessian方程和复Monge-Ampere方程的研究已经取得了很大的进展,但仍然没有Schauder或Calderon-Zygmund理论。本项目旨在纠正这种状况。对上述具体方程的研究将进一步加深我们对偏微分方程和微分几何这两个相关数学领域的认识。此外,该项目还将对出现这些方程的领域产生影响。特殊的拉格朗日方程和复杂的蒙格-安培方程为现代物理学弦理论中的镜像对称提供了数学基础,这是描述我们物理宇宙的统一方式。Isaacs方程的解导致某些随机过程的最优策略,例如,在工程和金融领域。海森方程也与力学中的非线性弹性理论密切相关,该理论研究拉伸材料恢复其原始尺寸和形状的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Yuan其他文献

Generation of Millimeter-Wave Ultra-Wideband Pulses Free of Strong Local Oscillation and Background
产生无强局部振荡和背景的毫米波超宽带脉冲
  • DOI:
    10.1109/lpt.2016.2594045
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yu Yuan;Jiang Fan;Tang Haitao;Xu Lu;Liu Xiaolong;Dong Jianji;Zhang Xinliang
  • 通讯作者:
    Zhang Xinliang
Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles
原位形成的 TiC0.3N0.7 颗粒增强 Si3N4 基陶瓷的温度驱动磨损行为
  • DOI:
    10.1111/jace.16283
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu Weimin
  • 通讯作者:
    Liu Weimin
Highly fluorescent cotton fiber based on luminescent carbon nanoparticles via a two-step hydrothermal synthesis method
两步水热合成法基于发光碳纳米粒子的高荧光棉纤维
  • DOI:
    10.1007/s10570-017-1230-0
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Yu Yuan;Wang Jian;Wang Jidong;Li Jing;Zhu Yanan;Li Xiaoqiang;Song Xiaolei;Ge Mingqiao
  • 通讯作者:
    Ge Mingqiao
Switchable Microwave Photonic Filter Between Low-Pass and High-Pass Responses
低通和高通响应之间可切换的微波光子滤波器
  • DOI:
    10.1109/jphot.2016.2602081
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yu Yuan;Tang Haitao;Xu Lu;Liu Xiaolong;Jiang Fan;Dong Jianji;Zhang Xinliang
  • 通讯作者:
    Zhang Xinliang
Associations of the PTEN -9C>G polymorphism with insulin sensitivity and central obesity in Chinese.
PTEN -9C>G 多态性与中国人胰岛素敏感性和中心性肥胖的关系。
  • DOI:
    10.1016/j.gene.2013.06.026
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Qiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. Tong
  • 通讯作者:
    N. Tong

Yu Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Yuan', 18)}}的其他基金

Fully Nonlinear Elliptic Equations
完全非线性椭圆方程
  • 批准号:
    2054973
  • 财政年份:
    2021
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Conference on Geometric Analysis
几何分析会议
  • 批准号:
    1707760
  • 财政年份:
    2017
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Nonlinear elliptic equations
非线性椭圆方程
  • 批准号:
    1362168
  • 财政年份:
    2014
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1100966
  • 财政年份:
    2011
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Fully Nonlinear Equations
完全非线性方程
  • 批准号:
    0500808
  • 财政年份:
    2005
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Regularity for Fully Nonlinear Equations
完全非线性方程的正则性
  • 批准号:
    0200784
  • 财政年份:
    2002
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
  • 批准号:
    0296153
  • 财政年份:
    2001
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
  • 批准号:
    9970367
  • 财政年份:
    1999
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
  • 批准号:
    11105178
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大型机械结构非线性特性的实验辨识和物理仿真
  • 批准号:
    50405043
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
半导体中激子的量子非线性光学的研究
  • 批准号:
    10474025
  • 批准年份:
    2004
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
  • 批准号:
    70471078
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Fully Nonlinear Elliptic Equations
完全非线性椭圆方程
  • 批准号:
    2054973
  • 财政年份:
    2021
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Variational theory for fully nonlinear elliptic equations
全非线性椭圆方程的变分理论
  • 批准号:
    DP170100929
  • 财政年份:
    2017
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Discovery Projects
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
  • 批准号:
    1620086
  • 财政年份:
    2016
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
  • 批准号:
    1612015
  • 财政年份:
    2016
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
  • 批准号:
    1547878
  • 财政年份:
    2014
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
Fully Nonlinear Elliptic Equations and Related Geometric Problems
完全非线性椭圆方程及相关几何问题
  • 批准号:
    1313218
  • 财政年份:
    2013
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Continuing Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
  • 批准号:
    411943-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
  • 批准号:
    1205350
  • 财政年份:
    2012
  • 资助金额:
    $ 17.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了