Fully Nonlinear Elliptic Equations

完全非线性椭圆方程

基本信息

  • 批准号:
    2054973
  • 负责人:
  • 金额:
    $ 29.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The research activities of this project will continue to deepen and broaden our understanding of two intimately connected mathematical fields: partial differential equations and differential geometry. The project will have an impact in the study of special Lagrangian equations, complex Monge-Ampère equations, and Hamiltonian stationary equations, which provide the mathematical foundation for mirror symmetry in the string theory of modern physics, and of maximal surface systems, which have the roots in general relativity. These Hessian equations are also related to nonlinear elasticity theory in mechanics, which studies the mechanisms whereby a material that is stretched returns to its original size and shape. The project provides research training opportunities for graduate students. The objectives for special Lagrangian equations are to derive Schauder and Calderón-Zygmund estimates for equations with critical and supercritical phases, to answer whether any homogeneous order two solution in dimension five or higher is trivial, to study low regularity of continuous viscosity solutions to the equations with subcritical phases, to investigate the existence and uniqueness of solutions to the Dirichlet problem for the special Lagrangian equation with continuous variable phase, and to resolve periodic Liouville problems with constraints as well as (entire) Liouville problem for the complex version of the special Lagrangian equation. The aim for symmetric sigma-k equations is to investigate Hessian estimates and regularity for sigma-2 equations in dimension four and higher, to obtain Schauder and Calderón-Zygmund estimates for 3-d sigma-2 equations, and to study the Liouville problem for sigma-k equations. The plan for complex and real Monge-Ampère equations is to demonstrate the triviality of any global solution to complex Monge-Ampère equations including self-shrinking equations for the Kähler-Ricci flow with certain necessary restrictions and to derive regularity of solutions to the real Monge-Ampère equations under a noncollapsing condition. For the case of maximal surface systems the goal is to study the Bernstein problems for exterior solutions and regularity for solutions under a noncollapsing condition. The project will also take on Hamiltonian stationary equations, where it aims to establish existence of the solutions to the second boundary value problem and rigidity for the Hamiltonian stationary equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究活动将继续深化和拓宽我们对两个密切相关的数学领域的理解:偏微分方程和微分几何。该项目将对特殊拉格朗日方程、复杂的蒙赫-安培方程和哈密顿定常方程的研究产生影响,这些方程为现代物理学弦理论中的镜像对称提供了数学基础,并对广义相对论中的最大表面系统产生了影响。这些海森方程也与力学中的非线性弹性理论有关,该理论研究拉伸材料恢复其原始尺寸和形状的机制。该项目为研究生提供研究培训机会。对特殊拉格朗日方程的研究目的是得到临界相和超临界相方程的Schauder和Calderón-Zygmund估计,回答在5维或更高维中的齐次二阶解是否平凡,研究亚临界相方程的连续粘性解的低正则性,研究具有连续变量相位的特殊Lagrange方程Dirichlet问题解的存在唯一性,以及求解带约束的周期Liouville问题和特殊Lagrange方程的复形式的(整体)Liouville问题。本文的目的是研究4维及更高维sigma-k方程的Hessian估计和正则性,得到三维sigma-k方程的Schauder和Calderón-Zygmund估计,以及sigma-k方程的Liouville问题。复杂和真实的Monge-Ampère方程的计划是证明复杂Monge-Ampère方程的任何整体解的平凡性,包括具有某些必要限制的Kähler-Ricci流的自收缩方程,并在非崩溃条件下导出真实的Monge-Ampère方程的解的正则性。对于极大曲面系统,我们的目标是研究非塌陷条件下的伯恩斯坦问题的外解和解的正则性。该项目还将研究哈密顿定常方程,旨在确定第二边值问题的解的存在性和哈密顿定常方程的刚性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Singular Solutions to Monge-Ampère Equation
Monge-Ampère 方程的奇异解
A monotonicity approach to Pogorelov's Hessian estimates for Monge- Ampère equation
Monge-Ampère 方程 Pogorelov 的 Hessian 估计的单调性方法
  • DOI:
    10.3934/mine.2023037
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Yuan, Yu
  • 通讯作者:
    Yuan, Yu
Regularity for convex viscosity solutions of special Lagrangian equation
Rigidity for general semiconvex entire solutions to the sigma-2 equation
  • DOI:
    10.1215/00127094-2022-0034
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    R. Shankar;Yu Yuan
  • 通讯作者:
    R. Shankar;Yu Yuan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Yuan其他文献

Generation of Millimeter-Wave Ultra-Wideband Pulses Free of Strong Local Oscillation and Background
产生无强局部振荡和背景的毫米波超宽带脉冲
  • DOI:
    10.1109/lpt.2016.2594045
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Yu Yuan;Jiang Fan;Tang Haitao;Xu Lu;Liu Xiaolong;Dong Jianji;Zhang Xinliang
  • 通讯作者:
    Zhang Xinliang
Temperature-driven wear behavior of Si3N4-based ceramic reinforced by in situ formed TiC0.3N0.7 particles
原位形成的 TiC0.3N0.7 颗粒增强 Si3N4 基陶瓷的温度驱动磨损行为
  • DOI:
    10.1111/jace.16283
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Liu Jiongjie;Yang Jun;Zhu Shengyu;Cheng Jun;Yu Yuan;Qiao Zhuhui;Liu Weimin
  • 通讯作者:
    Liu Weimin
Highly fluorescent cotton fiber based on luminescent carbon nanoparticles via a two-step hydrothermal synthesis method
两步水热合成法基于发光碳纳米粒子的高荧光棉纤维
  • DOI:
    10.1007/s10570-017-1230-0
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Yu Yuan;Wang Jian;Wang Jidong;Li Jing;Zhu Yanan;Li Xiaoqiang;Song Xiaolei;Ge Mingqiao
  • 通讯作者:
    Ge Mingqiao
Switchable Microwave Photonic Filter Between Low-Pass and High-Pass Responses
低通和高通响应之间可切换的微波光子滤波器
  • DOI:
    10.1109/jphot.2016.2602081
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Yu Yuan;Tang Haitao;Xu Lu;Liu Xiaolong;Jiang Fan;Dong Jianji;Zhang Xinliang
  • 通讯作者:
    Zhang Xinliang
Associations of the PTEN -9C>G polymorphism with insulin sensitivity and central obesity in Chinese.
PTEN -9C>G 多态性与中国人胰岛素敏感性和中心性肥胖的关系。
  • DOI:
    10.1016/j.gene.2013.06.026
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Qiu Yang;Hongyi Cao;Shugui Xie;Yuzhen Tong;Qibo Zhu;Fang Zhang;Q. Lü;Yan Yang;Daigang Li;Mei Chen;Chang;W. Jin;Yu Yuan;N. Tong
  • 通讯作者:
    N. Tong

Yu Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Yuan', 18)}}的其他基金

Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Conference on Geometric Analysis
几何分析会议
  • 批准号:
    1707760
  • 财政年份:
    2017
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Nonlinear elliptic equations
非线性椭圆方程
  • 批准号:
    1362168
  • 财政年份:
    2014
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Fully nonlinear elliptic and parabolic equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1100966
  • 财政年份:
    2011
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Fully nonlinear elliptic equations
全非线性椭圆方程
  • 批准号:
    0758256
  • 财政年份:
    2008
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Fully Nonlinear Equations
完全非线性方程
  • 批准号:
    0500808
  • 财政年份:
    2005
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Regularity for Fully Nonlinear Equations
完全非线性方程的正则性
  • 批准号:
    0200784
  • 财政年份:
    2002
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
  • 批准号:
    0296153
  • 财政年份:
    2001
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
A Priori Estimates for Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的先验估计
  • 批准号:
    9970367
  • 财政年份:
    1999
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant

相似海外基金

Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
  • 批准号:
    1800495
  • 财政年份:
    2018
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Variational theory for fully nonlinear elliptic equations
全非线性椭圆方程的变分理论
  • 批准号:
    DP170100929
  • 财政年份:
    2017
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Projects
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
  • 批准号:
    1620086
  • 财政年份:
    2016
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
  • 批准号:
    1612015
  • 财政年份:
    2016
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
  • 批准号:
    1620168
  • 财政年份:
    2016
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
  • 批准号:
    1547878
  • 财政年份:
    2014
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Fully Nonlinear Elliptic Equations and Related Geometric Problems
完全非线性椭圆方程及相关几何问题
  • 批准号:
    1313218
  • 财政年份:
    2013
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Continuing Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
  • 批准号:
    411943-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
  • 批准号:
    1205350
  • 财政年份:
    2012
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
  • 批准号:
    411943-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了