Pluri-Potential Theory and Geometric Function Theory
多势理论和几何函数理论
基本信息
- 批准号:0500880
- 负责人:
- 金额:$ 7.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposes the further study of various problems in complex analysis. There are two main parts to the proposal: the pluripotential theory and the geometric function theory. The pluripotential theory is more important for complex analysis in several variables than the classical potential theory for the one-dimensional analysis because it becomes more difficult to use analytic tools as the number of dimensions grows. That is why this theory found applications in all areas of complex analysis, including complex dynamics, and far beyond it in algebraic and transcendental number theories. The geometric function theory, whose goal is to obtain qualitative characteristics of investigated objects when quantitative approach fails, is represented in the project bysuggested studies of the pluripotential compactifications of domains, disk envelopes and groups of automorphisms. The project also intends to study algebraic properties of the ring of entire functions with applications to transcendental number theory.In this project research will be conducted on geometric complex analysis and number theory. Geometry, as a part of mathematics, aims to describe qualitative links between different objects. For example, parallel lines do not meet and the heights in a triangle meet at the same point. When Euclidean objects: points, lines and planes are replaced by more complicated structures like functions, surfaces and sets, the research is of a more delicate flavor. It happens because the mechanism providing links between objects is not transparent. In our proposal we will look for such a mechanism in the form of potentials similar to the energy levels of electrical charges. We also intend to understand better the properties of the number p.
本课题提出了对复杂分析中各种问题的进一步研究。该建议主要包括两个部分:多能理论和几何函数理论。对于多变量的复杂分析,多能势理论比一维分析的经典势理论更为重要,因为随着维数的增加,使用分析工具变得更加困难。这就是为什么这个理论在复分析的所有领域都有应用,包括复动力学,而且远远超出了代数和超越数论。几何函数理论的目标是在定量方法失败时获得所研究对象的定性特征,在该项目中通过建议研究域、盘包络和自同构群的多能紧化来表示。本课题拟研究全函数环的代数性质及其在超越数论中的应用。在这个项目中,将对几何复分析和数论进行研究。几何作为数学的一部分,旨在描述不同物体之间的定性联系。例如,平行线不相交,三角形的高在同一点相交。当欧几里得对象:点、线和面被更复杂的结构(如函数、面和集合)所取代时,研究就变得更加微妙了。这是因为提供对象之间链接的机制不透明。在我们的建议中,我们将以类似于电荷能级的势的形式寻找这样一种机制。我们还想更好地理解数字p的性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evgeny Poletsky其他文献
Evgeny Poletsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evgeny Poletsky', 18)}}的其他基金
The Geometric Function Theory and its Applications
几何函数理论及其应用
- 批准号:
0900877 - 财政年份:2009
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Midwest Several Complex Variables Conference at Syracuse University
雪城大学中西部多个复杂变量会议
- 批准号:
0312087 - 财政年份:2003
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
The Pluri-Potential Theory and Its Applications
多势理论及其应用
- 批准号:
0200743 - 财政年份:2002
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Pluri-Potential Theory and Its Application
数学科学:多势理论及其应用
- 批准号:
9101826 - 财政年份:1991
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
相似国自然基金
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
- 批准号:30801141
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploring Large-Scale Geometry via Local and Nonlocal Potential Theory
通过局部和非局部势理论探索大尺度几何
- 批准号:
2348748 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
- 批准号:
2401242 - 财政年份:2024
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an integral equation theory satisfying the variational principle and accurate for long-range potential systems
满足变分原理且对长程势系统准确的积分方程理论的发展
- 批准号:
23K04666 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Potential Theory Workshop: Intersections in Harmonic Analysis, Partial Differential Equations and Probability
会议:势理论研讨会:调和分析、偏微分方程和概率的交集
- 批准号:
2324706 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Standard Grant
CAREER: Tropical to temperate forest dynamics and their potential influences on plant performance strategies, a theory-data fusion approach
职业:热带到温带森林动态及其对植物性能策略的潜在影响,一种理论数据融合方法
- 批准号:
2239483 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Continuing Grant
Breakthrough in the New Formenlehre: On the Musicological Potential of Music Theory and Analysis
新形式的突破:论音乐理论与分析的音乐学潜力
- 批准号:
2884601 - 财政年份:2023
- 资助金额:
$ 7.4万 - 项目类别:
Studentship
The PayCaptain SmartSave: A nudge-theory-based AI-algorithm-driven app to unlock peoples' savings potential and generate financial resilience
PayCaptain SmartSave:一款基于助推理论的人工智能算法驱动的应用程序,可释放人们的储蓄潜力并增强财务弹性
- 批准号:
10032784 - 财政年份:2022
- 资助金额:
$ 7.4万 - 项目类别:
Collaborative R&D
Using Theory- and Data-Driven Neurocomputational Approaches and Digital Phenotyping to Understand RDoC Acute and Potential Threat
使用理论和数据驱动的神经计算方法和数字表型来了解 RDoC 急性和潜在威胁
- 批准号:
10661086 - 财政年份:2022
- 资助金额:
$ 7.4万 - 项目类别:
Convex Geometric Potential Theory
凸几何势理论
- 批准号:
RGPIN-2017-05036 - 财政年份:2022
- 资助金额:
$ 7.4万 - 项目类别:
Discovery Grants Program - Individual