Midwest Several Complex Variables Conference at Syracuse University

雪城大学中西部多个复杂变量会议

基本信息

  • 批准号:
    0312087
  • 负责人:
  • 金额:
    $ 1.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-11-01 至 2004-04-30
  • 项目状态:
    已结题

项目摘要

A Midwest Several Complex Variables Conference will be held on October 10-12,2003, at Syracuse University. This will continue the long time tradition of MidwestSeveral Complex Variables Conferences which became one of the highest quality andmost successful conference series in Complex Analysis. There have been many newinteresting developments in different fields of this area in recent years, especially inComplex Geometry, Complex Dynamics, Partial Differential Equations and PluripotentialTheory. The conference will provide a forum to exchange and to stimulatenew ideas from these disciplines, and to formulate new challenging problems that willhave important scientific impact. It is expected that this will result in increased understandingof the deeper mathematical issues in Complex Analysis. The conferencespeakers include: Thomas Bloom (University of Toronto), Araceli Bonifant (SUNY atStony Brook), Jeffrey Diller (University of Notre Dame), Peter Ebenfelt (University ofCalifornia, San Diego), Vincent Guedj (University Paul Sabatier, Toulouse), SergeiIvashkovich (Universit des Sciences et Technologies de Lille), Imre Patyi (Universityof California, San Diego), Jean-Pierre Rosay (University of Wisconsin, Madison), RasulShafikov (SUNY at Stony Brook), Mei-Chi Shaw (University of Notre Dame), B.Alan Taylor (University of Michigan), Sophia Vassiliadou (Georgetown University),Brendan Weickert (Washington and Lee University), Jan Wiegerinck (University ofAmsterdam).Complex Analysis is an interdisciplinary field involving complex numbers to solveproblems in mathematics. The conference will explore the interplay of research whichhas taken place in a number of broad areas: Complex Geometry, Complex Dynamics,Partial Differential Equations and Pluripotential Theory. Many of the developmentsin these disciplines found new applications outside their traditional area. We believethat hosting such a high level conference will greatly benefit the US mathematicians.It is especially helpful in educating our graduate students and recent Ph.D.'s, providingthem with the opportunity to be in touch with the leading experts working onthe frontier of the field. We will give special attention to attracting young scientistsamong the participants and speakers. A significant part of the conference budget isallocated especially for this. An effort will be made to increase the number of womenwho will attend the conference. To disseminate the information about the conferencethe organizers created a web site (address: http://web.syr.edu/ dcoman/SCV/),where abstracts of talks and suggested problems will be found.
中西部几个复变量会议将于2003年10月10- 12日在锡拉丘兹大学举行。这将延续中西部几个复变量会议的长期传统,成为复分析领域最高质量和最成功的会议系列之一。近年来,在复几何、复动力学、偏微分方程和多位势理论等领域,这一领域的研究取得了许多新的进展。会议将提供一个论坛,交流和激发这些学科的新思想,并制定新的挑战性问题,将有重要的科学影响。预计这将导致增加理解更深层次的数学问题在复杂的分析。会议发言人包括:托马斯·布鲁姆(多伦多大学),Araceli Bonifant(纽约州立大学石溪分校)(圣母大学),彼得·埃本费尔特(加州大学圣地亚哥分校)(图卢兹保罗萨巴蒂尔大学)(里尔科学技术大学),Imre Patyi(加州大学圣地亚哥分校)(威斯康星州,麦迪逊大学),拉苏尔沙菲科夫(纽约州立大学斯托尼布鲁克分校),肖美智(圣母大学),B.艾伦·泰勒(B.Alan Taylor)(密歇根大学),索菲亚Vassiliadou(乔治敦大学),布伦丹·韦克特(华盛顿和李大学),扬·维杰林克(阿姆斯特丹大学)。复分析是一个涉及复数的跨学科领域,用于解决数学问题。会议将探讨研究的相互作用whichhas发生在一些广泛的领域:复杂的几何,复杂的动力学,偏微分方程和Pluripotential理论。这些学科的许多发展在其传统领域之外找到了新的应用。我们相信,举办这样一次高水平的会议,对美国数学界有很大的帮助,特别是对培养我们的研究生和博士生有很大的帮助.的,为他们提供了与在该领域前沿工作的顶尖专家接触的机会。我们将特别注意吸引年轻科学家参加会议和发言。会议预算的很大一部分是专门为此分配的。将努力增加参加会议的妇女人数。为了传播有关会议的信息,组织者建立了一个网站(网址:http://web.syr.edu/ dcoman/SCV/),在该网站上可以找到会议的摘要和提出的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgeny Poletsky其他文献

Evgeny Poletsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgeny Poletsky', 18)}}的其他基金

The Geometric Function Theory and its Applications
几何函数理论及其应用
  • 批准号:
    0900877
  • 财政年份:
    2009
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Continuing Grant
Pluri-Potential Theory and Geometric Function Theory
多势理论和几何函数理论
  • 批准号:
    0500880
  • 财政年份:
    2005
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
The Pluri-Potential Theory and Its Applications
多势理论及其应用
  • 批准号:
    0200743
  • 财政年份:
    2002
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Continuing Grant
Pluri-Potential Theory
多势理论
  • 批准号:
    9804755
  • 财政年份:
    1998
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Pluri-Potential Theory and Its Application
数学科学:多势理论及其应用
  • 批准号:
    9101826
  • 财政年份:
    1991
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Junior Workshop in Several Complex Variables
会议:几个复杂变量的初级研讨会
  • 批准号:
    2347824
  • 财政年份:
    2024
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Analysis and Dynamics in Several Complex Variables
多个复杂变量的分析和动力学
  • 批准号:
    2349865
  • 财政年份:
    2024
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
  • 批准号:
    23K03140
  • 财政年份:
    2023
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Midwest Several Complex Variables Conference at Ohio State University
会议:俄亥俄州立大学中西部多个复杂变量会议
  • 批准号:
    2302532
  • 财政年份:
    2023
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Research and Education in Several Complex Variables
多个复杂变量的研究和教育
  • 批准号:
    2247175
  • 财政年份:
    2023
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Continuing Grant
Function Theory of Several Complex Variables
多复变量函数论
  • 批准号:
    2247151
  • 财政年份:
    2023
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2323531
  • 财政年份:
    2023
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Invariants in Several Complex Variables and Complex Geometry
多个复变量和复几何中的不变量
  • 批准号:
    2154368
  • 财政年份:
    2022
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Limits in Mating and in Several Complex Variables
LEAPS-MPS:交配和多个复杂变量的限制
  • 批准号:
    2213516
  • 财政年份:
    2022
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2152487
  • 财政年份:
    2022
  • 资助金额:
    $ 1.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了