Nonlinear Subelliptic Analysis
非线性亚椭圆分析
基本信息
- 批准号:0500983
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT A major part of the success in the linear and quasi-linear theory comes from interpreting derivatives in the generalized sense of distributions, allowing for a more powerful calculus. Distributions do not seem, in general well suited to non-linear problems because they cannot be multiplied. Jets are generalized (local) point-wise derivatives that allow for the interpretation and calculation of non-linear functions of derivatives. In this proposal, the PI presents a project touse jets to develop some basic Analysis tools in general state spaces. Typically, in these spaces higher derivatives with respect different parameters do not commute, as in the Euclidean case, but rather satisfy more complicated algebraic relations. Jets adapted to the geometry of a state space endowed with a family of vector fields satisfying a non-degeneracy condition are called sub-elliptic jets. Basic analysis topics like Taylor developments and maximum principles have to be adapted to conform to the new sub-elliptic geometry. Topics studied include: sub-elliptic extensions of the uniqueness theorem of R. Jensen for viscosity solutions, regularity for the sub-elliptic p-Laplacian, sub-elliptic convex functions, and Cordes sub-elliptic estimates. The derivative is a basic tool in mathematical analysis, used to measure the growth and decay of functions. Knowledge of the derivative of a function allows for its recovery by means of integration. When trying to model complex scientific phenomena it is often necessary to write down equations satisfied by derivatives, and derivatives of derivatives, of functions with respect to several parameters. These equations are called partial differential equations. In this proposal the PI proposes to develop tools to study partial differential equations written in terms of vector fields. These equations have applications to problems in Robotics, Control Theory and Mathematical Finance.
摘要线性和准线性理论的成功主要来自于广义分布意义上的导数的解释,从而允许更强大的微积分。总的来说,发行版似乎并不适合 非线性问题,因为 它们不能被倍增。射流是广义(局部)逐点导数,允许解释和计算导数的非线性函数。在这个建议中,PI提出了一个项目,使用喷气机开发一些基本的分析工具,在一般的状态空间。通常,在这些空间中,关于不同参数的高阶导数不会像欧几里德那样交换,而是满足更复杂的代数关系。适应于具有满足非简并条件的一族矢量场的状态空间的几何形状的射流被称为亚椭圆射流。基本的分析主题,如泰勒发展和最大值原理,必须适应新的亚椭圆几何。研究的主题包括:R的唯一性定理的次椭圆扩展。詹森的粘性解决方案,正则性的亚椭圆p-Laplacian,亚椭圆凸函数,和Cordes亚椭圆估计。导数是数学分析中的一个基本工具,用来度量函数的增长和衰减。函数导数的知识允许通过积分来恢复函数。当试图模拟复杂的科学现象时,通常需要写下函数关于几个参数的导数和导数的导数所满足的方程。这些方程称为偏微分方程。在这个建议中,PI提出开发工具来研究向量场中的偏微分方程。 这些方程在机器人学、控制理论和数学金融中有应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Manfredi其他文献
A free boundary problem for $\infty$ –Laplace equation
- DOI:
10.1007/s005260100107 - 发表时间:
2002-04-01 - 期刊:
- 影响因子:2.000
- 作者:
Juan Manfredi;Arshak Petrosyan;Henrik Shahgholian - 通讯作者:
Henrik Shahgholian
Juan Manfredi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Manfredi', 18)}}的其他基金
Special Semester on Evolutionary Problems at the Mittag-Leffler Institute - support for US participants
米塔格-莱弗勒研究所进化问题特别学期——为美国参与者提供支持
- 批准号:
1344316 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Partial Differential Equations related to the p-Laplacian
与 p-拉普拉斯相关的偏微分方程
- 批准号:
9970687 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis: Extensions and Applications
数学科学:拟共形分析:扩展和应用
- 批准号:
9501561 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differental Equations and Systems Related to Quasiregular Mappings
数学科学:偏微分方程和与拟正则映射相关的系统
- 批准号:
9101864 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations and Quasiregular Mappings
数学科学:偏微分方程和拟正则映射
- 批准号:
8901524 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Classical Analysis
数学科学:偏微分方程和经典分析
- 批准号:
8703286 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Averaging, spectral multipliers, sparse domination and subelliptic operators
平均、谱乘数、稀疏支配和次椭圆算子
- 批准号:
2054220 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in quasiconformal mappings and subelliptic PDE
拟共形映射和次椭圆 PDE 主题
- 批准号:
1503683 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic nonlinear equations and function theory
次椭圆非线性方程和函数论
- 批准号:
5149-2010 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic differential operators and subriemannian geometry
次椭圆微分算子和次布里曼几何
- 批准号:
3017-2006 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic differential operators and subriemannian geometry
次椭圆微分算子和次布里曼几何
- 批准号:
3017-2006 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Subelliptic differential operators and subriemannian geometry
次椭圆微分算子和次布里曼几何
- 批准号:
3017-2006 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual