Partial Differential Equations related to the p-Laplacian
与 p-拉普拉斯相关的偏微分方程
基本信息
- 批准号:9970687
- 负责人:
- 金额:$ 5.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9970687ABSTRACTIn this proposal, the PI considers problems in the theory of partial differential equations suggested by the interplay of ideas in nonlinear elasticity, image interpolation, control theoryand classical function theory. Recent developments in image interpolation andnonlinear elasticity can be formulated as extension problemsfor functions that have bounded derivatives. Typically, a functionis known only on a subset of its domain of definition.The problem is to interpolate or extend it to the whole domainmaintaining the maximum possible regularity. This extension isobtained by solving an elliptic boundary value problem.The solution of these problems by standard elliptic partialdifferential equations, including the Laplacian, always results in a loss of regularity at the boundary. To preserve the boundedness of the derivatives itis necessary to use nonlinear elliptic equations that are highlydegenerate, whose mathematical theory has just begun tobe understood. The prototype of these operators is the socalled "infinite-Laplacian". In many problems in physics and engineering one has to minimizethe average of a quadratic energy. The equations so obtainedare linear and are useful to describe small perturbations inmany cases. To describe large deviations, often one has toconsider nonlinear equations corresponding to non-quadraticenergies. If we try to minimize themaximum of the energy, say to find out where is the maximumvoltage or stress, the resulting equations are of a verynonlinear nature that requires a different mathematicaltreatment than in the traditional linear theory. The PI proposesto continue the development of the basic theory of these equations.Among the possible applications we have image interpolation,one of the basic operation in image processing, and non-linear elasticity.
在这个方案中,PI考虑了非线性弹性、图像插值、控制理论和经典函数理论的相互作用所提出的偏微分方程理论中的问题。图像插值和非线性弹性的最新发展可以表述为导数有界的函数的扩展问题。通常,一个函数只在其定义域的一个子集上是已知的。问题是将其插值或扩展到整个域,以保持最大可能的规律性。该推广是通过求解椭圆边值问题得到的。用标准椭圆型偏微分方程(包括拉普拉斯方程)求解这些问题,总是导致边界处的正则性丧失。为了保持导数的有界性,必须使用高度退化的非线性椭圆方程,其数学理论才刚刚开始被理解。这些算子的原型就是所谓的“无限拉普拉斯算子”。在许多物理和工程问题中,人们必须最小化二次能量的平均值。这样得到的方程是线性的,在许多情况下对描述小扰动是有用的。为了描述大的偏差,通常必须考虑与非二次能量相对应的非线性方程。如果我们试图最小化能量的最大值,比如找出最大电压或应力在哪里,得到的方程就具有非常非线性的性质,需要与传统线性理论不同的数学处理。PI建议继续发展这些方程的基本理论。在可能的应用中,我们有图像插值,图像处理中的基本操作之一,和非线性弹性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Manfredi其他文献
A free boundary problem for $\infty$ –Laplace equation
- DOI:
10.1007/s005260100107 - 发表时间:
2002-04-01 - 期刊:
- 影响因子:2.000
- 作者:
Juan Manfredi;Arshak Petrosyan;Henrik Shahgholian - 通讯作者:
Henrik Shahgholian
Juan Manfredi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Manfredi', 18)}}的其他基金
Special Semester on Evolutionary Problems at the Mittag-Leffler Institute - support for US participants
米塔格-莱弗勒研究所进化问题特别学期——为美国参与者提供支持
- 批准号:
1344316 - 财政年份:2013
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Quasiconformal Analysis: Extensions and Applications
数学科学:拟共形分析:扩展和应用
- 批准号:
9501561 - 财政年份:1995
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differental Equations and Systems Related to Quasiregular Mappings
数学科学:偏微分方程和与拟正则映射相关的系统
- 批准号:
9101864 - 财政年份:1991
- 资助金额:
$ 5.04万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations and Quasiregular Mappings
数学科学:偏微分方程和拟正则映射
- 批准号:
8901524 - 财政年份:1989
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differential Equations and Classical Analysis
数学科学:偏微分方程和经典分析
- 批准号:
8703286 - 财政年份:1987
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 5.04万 - 项目类别:
Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
- 批准号:
DP220100937 - 财政年份:2023
- 资助金额:
$ 5.04万 - 项目类别:
Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
- 批准号:
2307610 - 财政年份:2023
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 5.04万 - 项目类别:
Standard Grant