Mathematical Sciences: Partial Differential Equations and Quasiregular Mappings
数学科学:偏微分方程和拟正则映射
基本信息
- 批准号:8901524
- 负责人:
- 金额:$ 3.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-07-01 至 1991-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mappings from domains in Euclidean space of any dimension into the same space are said to be quasiregular if the distortion remains bounded. This means that infinitesimal dilations remain within fixed limits in all directions and at all points. The concept is similar to that of quasiconformal mapping except that quasiregular maps are not required to be univalent. Aside from their interest as transformations which preserve reasonable geometric properties, they also occur as solutions of quasilinear elliptic partial differential equations involving the gradient of scalar-valued functions. The first goal of this mathematical research is to determine the interior regularity of these solutions, which may fail since the gradient of the solution can vanish at interior points (in contrast to quasiconformal maps). A specific objective is to show that the gradients of solutions are locally of bounded mean variation. This is a natural question since it has recently been shown that the gradients are in all the Lebesgue spaces (locally). Additional work will focus on the differential operator known as the p-Laplacian which is receiving considerable attention at this time. Gradients of solutions of the corresponding homogeneous equation have their oscillation bounded by the maximum of their length. This is not the best possible estimate on the oscillation - a better one has been found in two dimensions. Efforts will be made to extend the sharper bound to higher dimensions. In a more geometric vein, work will continue on the question of boundary limits of quasiregular mappings. At issue is the extent to which a quasiregular mapping or a solution of the p-Laplacian can be expected to approach a limiting value as the independent variable approaches the boundary of the domain of definition in a nontangential manner. When the domain is a ball, the existence of nontangential limits is known to exist in sets of low Hausdorff measure in the case of the p-Laplacian, but it is not known whether quasiregular maps must have any such limits at all. Those with smooth distortion are understood, but quasiregular maps do not always have smooth or even continuous distortion.
任意维欧氏空间中域的映射 进入同一个空间的都说是拟正则的,如果 仍然有界。 这意味着无限小的膨胀仍然存在 在所有方向和所有点的固定范围内。 的 概念类似于拟共形映射,除了 拟正则映射不要求是单叶的。 除了 他们的兴趣是保持合理的转换 几何性质,它们也出现作为解决方案的拟线性 椭圆型偏微分方程 标量值函数 这个数学的第一个目标 研究是为了确定这些内在规律性, 解决方案,这可能会失败,因为解决方案的梯度可以 在内点消失(与拟共形映射相反)。 一个具体的目标是表明,梯度的解决方案, 是局部有界平均变差。 这是一个自然 问题,因为最近已经表明,梯度 在所有的Lebesgue空间中(局部)。 额外的工作将集中在微分算子 被称为p-Laplacian, 注意在这个时候。 解的导数 相应的齐次方程振动有界 最大的长度。 这不是最好的可能 估计的振荡-一个更好的一个已经发现,在两个 尺寸. 将努力扩大更严格的约束, 更高的维度 从几何学的角度来看, 拟正则映射的边界极限 争论的焦点是 一个拟正则映射或 可以预期p-Laplacian接近极限值,因为 独立变量接近域的边界 以非线性的方式定义。 当域是球时, 已知非切向极限存在于集合中 在p-Laplacian的情况下,低Hausdorff测度,但它 不知道拟正则映射是否一定有这样的极限 根本 那些具有平滑失真的是可以理解的,但是 拟正则映射并不总是光滑的甚至是连续的 畸变
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Manfredi其他文献
A free boundary problem for $\infty$ –Laplace equation
- DOI:
10.1007/s005260100107 - 发表时间:
2002-04-01 - 期刊:
- 影响因子:2.000
- 作者:
Juan Manfredi;Arshak Petrosyan;Henrik Shahgholian - 通讯作者:
Henrik Shahgholian
Juan Manfredi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Manfredi', 18)}}的其他基金
Special Semester on Evolutionary Problems at the Mittag-Leffler Institute - support for US participants
米塔格-莱弗勒研究所进化问题特别学期——为美国参与者提供支持
- 批准号:
1344316 - 财政年份:2013
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Differential Equations related to the p-Laplacian
与 p-拉普拉斯相关的偏微分方程
- 批准号:
9970687 - 财政年份:1999
- 资助金额:
$ 3.88万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis: Extensions and Applications
数学科学:拟共形分析:扩展和应用
- 批准号:
9501561 - 财政年份:1995
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Partial Differental Equations and Systems Related to Quasiregular Mappings
数学科学:偏微分方程和与拟正则映射相关的系统
- 批准号:
9101864 - 财政年份:1991
- 资助金额:
$ 3.88万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations and Classical Analysis
数学科学:偏微分方程和经典分析
- 批准号:
8703286 - 财政年份:1987
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
New Trends in Localized Patterns in Partial Differential Equations: Mathematical Theory and Applications to Physics, Biology, and the Social Sciences
偏微分方程定域模式的新趋势:数学理论及其在物理、生物学和社会科学中的应用
- 批准号:
2013192 - 财政年份:2020
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Support of the Board on Mathematical Sciences and Anayltics and the Committee on Applied and Theoretical Statistics
数学科学和分析委员会以及应用和理论统计委员会的部分支持
- 批准号:
1820527 - 财政年份:2018
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Support of the Meetings of the Board on Mathematical Sciences and Analytics
数学科学与分析委员会会议的部分支持
- 批准号:
1738066 - 财政年份:2017
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Support of the Board on Mathematical Sciences and Their Applications
数学科学及其应用委员会的部分支持
- 批准号:
1330486 - 财政年份:2014
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Analysis of Stochastic Partial Differential Equations
NSF/CBMS 数学科学区域会议 - 随机偏微分方程分析
- 批准号:
1241389 - 财政年份:2012
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences--Recent Advances in the Numerical Approximation of Stochastic Partial Differential Equations
CBMS数学科学区域会议--随机偏微分方程数值逼近的最新进展
- 批准号:
0938235 - 财政年份:2010
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
PARTIAL SUPPORT OF THE MEETING OF THE BOARD ON MATHEMATICAL SCIENCES AND THEIR APPLICATIONS
部分支持数学科学及其应用委员会会议
- 批准号:
1025439 - 财政年份:2010
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Support of the Meetings of the Board on Mathematical Sciences and Their Applications
数学科学及其应用委员会会议的部分支持
- 批准号:
0855710 - 财政年份:2009
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Adaptive Finite Element Methods for Partial Differential Equations; Spring 2009, College Station, TX
CBMS 数学科学区域会议 - 偏微分方程的自适应有限元方法;
- 批准号:
0834176 - 财政年份:2009
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Partial Support of the Board on Mathematical Sciences and their Applications
数学科学及其应用委员会的部分支持
- 批准号:
0455144 - 财政年份:2006
- 资助金额:
$ 3.88万 - 项目类别:
Continuing Grant