Orbit Equivalence Relations and Classification Problems

轨道等价关系和分类问题

基本信息

  • 批准号:
    0501039
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

This project concerns two important aspects of the descriptive set theory of definable equivalence relations. On the theoretical side the PI proposes to study the structures of Polish groups and the dynamics of their actions. The scope of the groups ranges from countable nilpotent groups to the full unitary group. On the application side the PI proposes to study the major open problems concerning classification of mathematical structures arising in analysis, topology and geometry. The main focus, though, will be classification problems that are comparable to the orbit equivalence relations induced by actions of the unitary group. One example of such a problem is the classification of bounded linear operators on a separable complex Hilbert space.Many important open problems in various fields of mathematics ask for satisfactory classification of mathematical objects studied in the fields. These classification problems can often be formalized as definable equivalence relations, sometimes even orbit equivalence relations induced by Polish group actions. A striking theory of definable equivalence relations has been developed in the past 15 years or so and complete understanding of the complexity of many classification problems has thus been obtained. This project seeks further development of the descriptive set theory of definable equivalence relations. It is anticipated that mathematics of different fields be brought together in this foundational framework. For many of the old classification problems the descriptive set theoretic perspective is new and worth investigating.
本项目涉及可定义等价关系的描述集合论的两个重要方面。在理论方面,国际和平研究所建议研究波兰团体的结构及其行动的动态。群的范围从可数幂零群到完全酉群。在应用方面,PI建议研究与分析、拓扑和几何中出现的数学结构分类有关的主要开放问题。然而,主要的焦点将是分类问题,这些问题类似于由么正群的作用引起的轨道等价关系。这类问题的一个例子是可分复Hilbert空间上的有界线性算子的分类。数学各个领域中的许多重要公开问题都要求对这些领域中研究的数学对象进行令人满意的分类。这些分类问题通常可以被形式化为可定义的等价关系,有时甚至是由波兰群体行动引起的轨道等价关系。在过去的15年左右的时间里,人们发展了一种引人注目的可定义等价关系理论,从而对许多分类问题的复杂性有了完全的理解。本项目旨在进一步发展可定义等价关系的描述集合论。预计不同领域的数学将在这一基本框架内结合在一起。对于许多古老的分类问题,描述性集合论的观点是新的和值得研究的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Su Gao其他文献

Group Colorings and Bernoulli Subflows
组着色和伯努利子流
  • DOI:
    10.1090/memo/1141
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su Gao;S. Jackson;Brandon Seward
  • 通讯作者:
    Brandon Seward
On the classification of Polish metric spaces up to isometry
波兰度量空间直至等距的分类
Non-archimedean abelian Polish groups and their actions
  • DOI:
    http://dx.doi.org/10.1016/j.aim.2016.11.019
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Longyun Ding;Su Gao
  • 通讯作者:
    Su Gao
Bounded rank-1 transformations
有界 1 阶变换
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Su Gao;Aaron Hill
  • 通讯作者:
    Aaron Hill
On the complexity of the uniform homeomorphism relation between separable Banach spaces
可分离Banach空间间一致同胚关系的复杂性

Su Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Su Gao', 18)}}的其他基金

Developing a Practice-based Interdisciplinary Teacher Preparation Program at the Intersection of Science, Second Language, and Literacy Acquisition
在科学、第二语言和读写能力的交叉点上制定基于实践的跨学科教师准备计划
  • 批准号:
    2012970
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Equivalence Relations, Symbolic Dynamics, and Descriptive Set Theory
等价关系、符号动力学和描述集合论
  • 批准号:
    1201290
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
EMSW21-RTG: Research Training Group in Logic and Dynamics
EMSW21-RTG:逻辑和动力学研究培训组
  • 批准号:
    0943870
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Invariant Descriptive Set Theory and Its Applications
不变描述集合论及其应用
  • 批准号:
    0901853
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Complex definable equivalence relations and applications
复杂可定义的等价关系及应用
  • 批准号:
    0100439
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
  • 批准号:
    2246746
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Treeable Equivalence Relations and Quasi-isometry
可树化的等价关系和拟等距
  • 批准号:
    575637-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
  • 批准号:
    1954069
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Equivalence relations of quantum walks
量子行走的等价关系
  • 批准号:
    17K05274
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Treeable Equivalence Relations and the Use of Probability Groups in Arithmetic Combinatorics
可树化的等价关系和概率群在算术组合中的使用
  • 批准号:
    1501036
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Equivalence Relations, Symbolic Dynamics, and Descriptive Set Theory
等价关系、符号动力学和描述集合论
  • 批准号:
    1201290
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Ideals and Equivalence Relations
理想与等价关系
  • 批准号:
    1161078
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of Hecke von Neumann algebras determined by equivalence relations and applications to automorphic forms
由等价关系确定的赫克·冯·诺依曼代数的研究及其在自守形式中的应用
  • 批准号:
    23740132
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Synthetic research on the relationship among various equivalence relations of singularities
奇点各种等价关系的综合研究
  • 批准号:
    20540075
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Equivalence Relations, Group Actions, and Descriptive Set Theory
等价关系、群行为和描述集合论
  • 批准号:
    DP0666120
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了