Ideals and Equivalence Relations
理想与等价关系
基本信息
- 批准号:1161078
- 负责人:
- 金额:$ 13.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to further develop the connection between the fast developing area of Borel equivalence relations and forcing theory within the broader context of set theory and mathematical analysis. The driving idea is contained in the book "Canonical Ramsey Theory on Polish Spaces", coauthored by the PI, to appear in 2013. Given a Borel or analytic equivalence relation on a Polish space, is it possible to find a large subset of the space on which the equivalence is as simple as possible? Here, the largeness is to be interpreted in the sense of some sigma-ideal on the space, and the simplicity in the sense of the Borel reducibility rating of complexity of equivalence relations. This question, stated in terms similar to canonical Ramsey theory, uncovers a broad landscape indexed by sigma-ideals and equivalence relations, generalizing such results as the Proemel-Voigt theorem on canonization of smooth equivalence relations on Ramsey cubes, or Blass theorem on canonization of analytic graphs on perfect sets. The overarching general theme is a correspondence between Borel equivalence relations and models of set theory. The applications include nonreducibility results with the strongest possible statements and Silver type theorems for various sigma-ideals encountered in mathematical analysis. The project offers numerous other offshoots as well.The project follows the general theme of classification of equivalence problems in mathematics. Most areas of mathematics start with a class of objects and a notion of similarity between them. It is often of paramount importance to that branch of mathematics to evaluate the complexity of that notion of similarity. It turns out that there is a natural rating of complexity of such similarity problems that ties together most branches of (infinitary) mathematics. In order to evaluate the complexity correctly within this rating, one needs, among other things, tools for showing that one such notion of similarity is not reducible to another. The project offers a novel way for doing that: certain notions of similarity greatly simplify when one is allowed to restrict attention to a smaller, but still significant, class of objects--while others do not. Results of this type may not have immediate practical applications, but they do help with the understanding of methodology of mathematics. As is typical for this field, they also tie the fabric of mathematics closer together, showing that concerns of one field may reduce to questions solved by another field.
该项目旨在在集合论和数学分析的更广泛背景下,进一步发展快速发展的 Borel 等价关系领域与强迫理论之间的联系。其驱动思想包含在由 PI 合着的 2013 年出版的《关于波兰空间的规范拉姆齐理论》一书中。给定波兰空间上的 Borel 或解析等价关系,是否有可能找到等价性尽可能简单的空间大子集?这里,“大”被解释为空间上某种西格玛理想的意义,“简单”被解释为等价关系复杂性的波莱尔可约性等级的意义。这个问题以类似于规范拉姆齐理论的术语表述,揭示了由西格玛理想和等价关系索引的广阔前景,概括了诸如拉姆齐立方体上平滑等价关系规范化的普罗梅尔-沃伊特定理或完美集上解析图规范化的布拉斯定理等结果。总体主题是 Borel 等价关系和集合论模型之间的对应关系。这些应用程序包括具有最强可能陈述的不可约性结果以及数学分析中遇到的各种西格玛理想的 Silver 型定理。该项目还提供了许多其他分支。该项目遵循数学中等价问题分类的总体主题。大多数数学领域都是从一类对象以及它们之间的相似性概念开始的。对于该数学分支来说,评估相似性概念的复杂性通常至关重要。事实证明,此类相似问题的复杂性有一个自然的评级,它将(无限)数学的大多数分支联系在一起。为了正确评估此评级中的复杂性,除其他外,我们还需要工具来证明这种相似性概念不能还原为另一种相似性概念。该项目提供了一种新颖的方法来做到这一点:当人们被允许将注意力限制在较小但仍然重要的一类物体上时,某些相似性的概念就会大大简化——而其他的则不然。此类结果可能不会立即产生实际应用,但它们确实有助于理解数学方法论。正如该领域的典型情况一样,它们还将数学结构紧密地联系在一起,表明一个领域的关注点可能会简化为另一个领域解决的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jindrich Zapletal其他文献
Jindrich Zapletal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jindrich Zapletal', 18)}}的其他基金
Conference: Southeastern Logic Symposium
会议:东南逻辑研讨会
- 批准号:
2401437 - 财政年份:2024
- 资助金额:
$ 13.59万 - 项目类别:
Continuing Grant
SM: Logic Year at the University of Florida
SM:佛罗里达大学逻辑年
- 批准号:
0532644 - 财政年份:2005
- 资助金额:
$ 13.59万 - 项目类别:
Standard Grant
Cardinal Invariants and Descriptive Set Theory
基数不变量和描述集合论
- 批准号:
0300201 - 财政年份:2003
- 资助金额:
$ 13.59万 - 项目类别:
Standard Grant
Large Cardinals and the Methodology of Mathematics
大基数和数学方法论
- 批准号:
0071437 - 财政年份:2000
- 资助金额:
$ 13.59万 - 项目类别:
Standard Grant
相似海外基金
Classification and invariants for Borel equivalence relations
Borel 等价关系的分类和不变量
- 批准号:
2246746 - 财政年份:2023
- 资助金额:
$ 13.59万 - 项目类别:
Standard Grant
Treeable Equivalence Relations and Quasi-isometry
可树化的等价关系和拟等距
- 批准号:
575637-2022 - 财政年份:2022
- 资助金额:
$ 13.59万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
- 批准号:
1954069 - 财政年份:2020
- 资助金额:
$ 13.59万 - 项目类别:
Continuing Grant
Equivalence relations of quantum walks
量子行走的等价关系
- 批准号:
17K05274 - 财政年份:2017
- 资助金额:
$ 13.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Treeable Equivalence Relations and the Use of Probability Groups in Arithmetic Combinatorics
可树化的等价关系和概率群在算术组合中的使用
- 批准号:
1501036 - 财政年份:2015
- 资助金额:
$ 13.59万 - 项目类别:
Continuing Grant
Equivalence Relations, Symbolic Dynamics, and Descriptive Set Theory
等价关系、符号动力学和描述集合论
- 批准号:
1201290 - 财政年份:2012
- 资助金额:
$ 13.59万 - 项目类别:
Continuing Grant
Investigation of Hecke von Neumann algebras determined by equivalence relations and applications to automorphic forms
由等价关系确定的赫克·冯·诺依曼代数的研究及其在自守形式中的应用
- 批准号:
23740132 - 财政年份:2011
- 资助金额:
$ 13.59万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Synthetic research on the relationship among various equivalence relations of singularities
奇点各种等价关系的综合研究
- 批准号:
20540075 - 财政年份:2008
- 资助金额:
$ 13.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivalence Relations, Group Actions, and Descriptive Set Theory
等价关系、群行为和描述集合论
- 批准号:
DP0666120 - 财政年份:2006
- 资助金额:
$ 13.59万 - 项目类别:
Discovery Projects
Orbit Equivalence Relations and Classification Problems
轨道等价关系和分类问题
- 批准号:
0501039 - 财政年份:2005
- 资助金额:
$ 13.59万 - 项目类别:
Standard Grant