Studies on Fluids and Fluid Mixtures: Connecting Theory with Experiment
流体和流体混合物的研究:理论与实验的结合
基本信息
- 批准号:0502196
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant is supported jointly by the Division of Materials Research and the Chemistry Division. The research is targeted at correlating microscopic structure and macroscopic behavior for fluids and their mixtures, with a particular emphasis on complex fluids. While the research tools are theoretical , the focus is on making connections with experiment and, where appropriate, simulation. An unusual opportunity afforded by this work is the ability to compare the results for the lattice and continuum models using the same theoretical approach. The behavior of complex fluids has been of high interest recently, stimulated by the increasingly sophisticated kinds of measurements accessible to scientists as well as the greatly expanded ability to simulate mixtures of dense fluids. The research proposed here builds upon the work of the PI and her group in using the Born-Green-Yvon (BGY) integral equation technique to model lattice and continuum fluids and mixtures. The lattice theory yields simple closed-form expressions for thermodynamic quantities. Advantages include its accessibility to non-theorists, and the ability to test it using lattice simulation results on complex systems. The continuum theory is capable of tackling more subtle issues involving the interplay between local structure and bulk properties. However, numerical methods are required and simulation data on mixtures are limited. The development of analogous lattice and continuum theories creates opportunities for determining which properties are sensitive to the imposition of a lattice constraint. The lattice studies proposed here focus on three projects: re-deriving the BGY theory to describe films and interfaces and studying the transition to the bulk; increasing the complexity of systems studied to include ternary mixtures; and mapping the thermodynamic results of the BGY theory onto the formalism of the Flory-Huggins chi parameter, the most widely-used characteristic parameter in the polymer community. This work will build on the demonstrated ability of the lattice BGY theory to describe simple and polymeric fluids and mixtures, and will exploit recently developed strategies for extracting much information from a minimal amount of experimental data. On the continuum side, the BGY theory has been used recently to study square-well fluids of up to 16-mers, and n-alkanes. These results will inform the proposed study of small branched alkanes, a project which will lead to a greater understanding of packing effects on fluid properties, and consequently of what may be lost when the lattice BGY theory is used. The second project focuses on square-well mixtures of short chain fluids; the components will range between monomers and 8-mers, thereby stretching the limit of current simulation results. This research will require consideration of the concentration dependence of the inter- and intramolecular distributions: how to treat it, and under what conditions it will become important. In this work connections between experimental data/analysis and the theoretical tools developed by the PI to study complex fluids will be expanded and strengthened. The outcome is that a more sophisticated combination of strategies, accessible to the materials community, will be available in solving problems relating to understanding connections between microscopic structure and macroscopic behavior. Local presentations by undergraduates and graduates will help them develop teaching skills. Results will also be disseminated through conference presentations by the PI and her research group at national meetings, and publications. The PI's efforts in research and teaching mentorship has resulted in an increase in the number of women in the ranks of graduate and postgraduate students and in faculty; it is expected that such effects will continue.
该补助金由材料研究部和化学部联合支持。 该研究旨在将流体及其混合物的微观结构和宏观行为相关联,特别强调复杂流体。 虽然研究工具是理论性的,但重点是与实验和适当的模拟相联系。这项工作提供的一个不寻常的机会是能够比较结果的晶格和连续模型使用相同的理论方法。复杂流体的行为最近引起了人们的高度兴趣,这是由于科学家可以获得越来越复杂的测量方法以及模拟稠密流体混合物的能力大大扩展。 这里提出的研究建立在PI和她的团队使用Born-Green-Yvon(BGY)积分方程技术来模拟晶格和连续介质流体和混合物的工作基础上。 格点理论给出了热力学量的简单的封闭式表达式。 其优点包括非理论家的可访问性,以及使用复杂系统上的晶格模拟结果对其进行测试的能力。 连续介质理论能够处理更微妙的问题,包括局部结构和整体性质之间的相互作用。 然而,数值方法是必需的,混合物的模拟数据是有限的。 类似的晶格和连续统理论的发展为确定哪些性质对晶格约束的施加敏感创造了机会。 这里提出的晶格研究集中在三个项目:重新推导的BGY理论来描述薄膜和界面,并研究过渡到散装;增加研究系统的复杂性,包括三元混合物;和映射的热力学结果的BGY理论的形式主义的Flory-Huggins chi参数,最广泛使用的特征参数在聚合物社区。 这项工作将建立在晶格BGY理论描述简单和聚合物流体和混合物的能力,并将利用最近开发的策略,从最少量的实验数据中提取大量的信息。 在连续介质方面,BGY理论最近已被用于研究高达16聚体的方阱流体和正构烷烃。这些结果将通知拟议的研究小支链烷烃,一个项目,这将导致更好地了解填充对流体性质的影响,从而可能会失去什么时,晶格BGY理论被使用。第二个项目的重点是短链流体的方井混合物;组分范围将在单体和8聚体之间,从而扩展了当前模拟结果的极限。 这项研究需要考虑分子间和分子内分布的浓度依赖性:如何处理它,以及在什么条件下它将变得重要。 在这项工作中, 数据/分析和理论 PI开发的用于研究复杂流体的工具将得到扩展和加强。其结果是,一个更复杂的策略组合,可访问的材料社区,将可用于解决与理解微观结构和宏观行为之间的联系有关的问题。本科生和研究生的本地演讲将帮助他们发展教学技能。 研究结果还将通过主要研究者及其研究小组在国家会议上的会议报告和出版物传播。 公共政策研究所在研究和教学指导方面的努力已经导致研究生和研究生以及教师队伍中妇女人数的增加;预计这种影响将继续下去。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Lipson其他文献
Jane Lipson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Lipson', 18)}}的其他基金
Connecting Dynamics and Thermodynamics to Predict Mobility and Glassiness
连接动力学和热力学来预测流动性和玻璃度
- 批准号:
2006504 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Thermodynamic and Dynamic Behaviour in Polymer Melts, Glasses, and Mixtures: Links to Structure Using Theory and Simulation
聚合物熔体、玻璃和混合物的热力学和动态行为:使用理论和模拟与结构的联系
- 批准号:
1708542 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Studies on Polymeric Glasses, Melts, and Mixtures: Connecting Microscopic Character with Observable Behaviour
聚合物玻璃、熔体和混合物的研究:将微观特征与可观察行为联系起来
- 批准号:
1403757 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Polymer Glass, Melt, and Mixture Thermodynamics in the Bulk and in Thin Films
块体和薄膜中的聚合物玻璃、熔体和混合物热力学
- 批准号:
1104658 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Studies on Polymer Glasses, Melts, and Solutions
聚合物玻璃、熔体和溶液的研究
- 批准号:
0804593 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
2008 Polymer Physics Gordon Research Conference, Newport, RI, June 29 - July 4, 2008
2008年高分子物理学戈登研究会议,罗德岛州纽波特,2008年6月29日至7月4日
- 批准号:
0820606 - 财政年份:2008
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Lattice and Continuum Studies of Fluids and Fluid Mixtures
流体和流体混合物的晶格和连续体研究
- 批准号:
0099541 - 财政年份:2001
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Fluids and Their Mixtures: Lattice and Continuum Studies and Comparisons
流体及其混合物:晶格和连续体研究与比较
- 批准号:
9730976 - 财政年份:1998
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
A Born-Green-Yvon Integral Equation Treatment of Fluids and their Mixtures
流体及其混合物的Born-Green-Yvon积分方程处理
- 批准号:
9424086 - 财政年份:1995
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
A Theoretical Treatment of Polymer Solutions and Polymer Blends
聚合物溶液和聚合物共混物的理论处理
- 批准号:
9122337 - 财政年份:1992
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似海外基金
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非牛顿流体的连续流动混合
- 批准号:
RGPIN-2019-04644 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Molecular Modeling of Thermodynamic Properties of Fluids and Fluid Mixtures
流体和流体混合物热力学性质的分子模拟
- 批准号:
RGPIN-2018-04212 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Molecular Modeling of Thermodynamic Properties of Fluids and Fluid Mixtures
流体和流体混合物热力学性质的分子模拟
- 批准号:
RGPIN-2018-04212 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Fluid-gas and fluid-structure interactions in complex fluids
复杂流体中的流体-气体和流体-结构相互作用
- 批准号:
RGPIN-2016-06345 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非牛顿流体的连续流动混合
- 批准号:
RGPIN-2019-04644 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
The Fluid Mechanics of Bacterial Swimming in Yield Stress Fluids
屈服应力流体中细菌游动的流体力学
- 批准号:
2135617 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Investigation of Continuous-Flow Mixing of Non-Newtonian Fluids with Energy-Efficient Coaxial Mixers through Advanced Flow Visualization Techniques and Computational Fluid Dynamics
通过先进的流动可视化技术和计算流体动力学研究使用节能同轴混合器的非牛顿流体的连续流动混合
- 批准号:
RGPIN-2019-04644 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Suspensions of Noncolloidal Particles in Yield Stress Fluids: Fluid Mechanics, Rheology and Microstructure
职业:屈服应力流体中非胶体颗粒的悬浮液:流体力学、流变学和微观结构
- 批准号:
2050396 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Physics-Constrained Deep Learning for Surrogate Modeling of Dynamics of Fluids and Fluid-Structure Interaction
用于流体动力学和流固耦合代理建模的物理约束深度学习
- 批准号:
1934300 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Impact of Fluids Distribution and Separation Systems on the Fluid Dynamics of a Resid Hydroprocessor
流体分配和分离系统对渣油加氢处理器流体动力学的影响
- 批准号:
514585-2017 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Collaborative Research and Development Grants